

Environment

This report was prepared by the NWRM project, led by Office International de l'Eau (OIEau), in consortium with Actéon Environment (France), AMEC Foster Wheeler (United Kingdom), BEF (Baltic States), ENVECO (Sweden), IACO (Cyprus/Greece), IMDEA Water (Spain), REC (Hungary/Central & Eastern Europe), REKK inc. (Hungary), SLU (Sweden) and SRUC (UK) under contract 07.0330/2013/659147/SER/ENV.C1 for the Directorate-General for Environment of the European Commission. The information and views set out in this report represent NWRM project's views on the subject matter and do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this report. Neither the Commission nor any person acting on the Commission's behalf may be held responsible for the use which may be made of the information contained therein.

NWRM project publications are available at <u>http://www.nwrm.eu</u>

I. NWRM Description

Low till agriculture, also known as conservation or reduced till applies to arable land. It consists of a combination of a crop harvest which leaves at least 30% of crop residue on the soil surface, during the critical soil erosion period and some surface work (low till). This slows water movement, which reduces the amount of soil erosion and potentially leads to greater infiltration.

II. Illustration

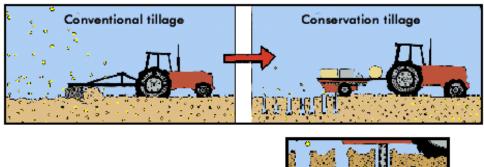
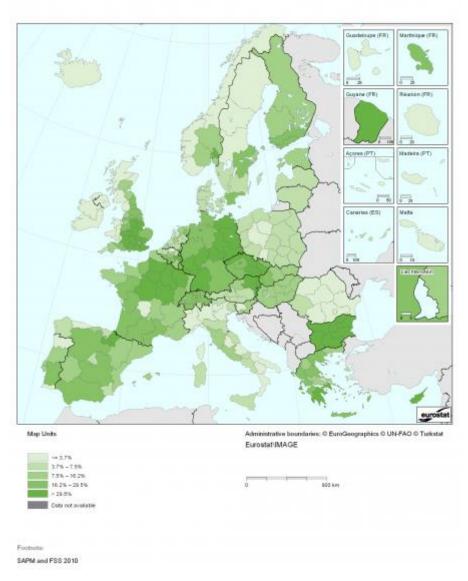


Illustration 1: Example of ridge-till farming system

Source: Why Files, 2011 http://climatetechwiki.org/technology/conservation-tillage

Illustration 2: Example of crop planted in conservation tillage

Source:


http://luirig.altervista.org/naturaitaliana/viewpics.php?title=Contour+farming+and+conservation+tilla ge+protect+highly+erodi

III. Geographic Applicability

Land Use	Applicability	Evidence
Artificial Surfaces	No	Not applicable
Agricultural Areas	Yes	Arable land
Forests and Semi- Natural Areas	No	Not applicable
Wetlands	No	Not applicable

Region	Applicability	Evidence	
Western Europe	Yes	Uptake of no-ti 2010 (Eurostat)	ill in selected countries as % of arable in):
		Belgium	14.5%
		Germany	37.7%
		Ireland	2.6%
		France	25.1%
		Luxembourg	25.0%
		Netherlands	10.1%
		United Kingdom	24.5%
Mediterranean	Yes	Uptake of no-ti 2010 (Eurostat)	ill in selected countries as % of arable in):
		Greece	18.5%
		Spain	19.7%
		Croatia	3.2%
		Italy	4.3%
		Cyprus	66.0%
		Malta	0.0%
		Portugal	13.6%
		Slovenia	8.7%

Region	Applicability	Evidence	
Baltic Sea	Yes	Uptake of no-till in selected countries as % of arable in 2010 (Eurostat):	
		Denmark	5.4%
		Estonia	13.3%
		Latvia	6.4%
		Poland	4.3%
		Finland	16.8%
		Sweden	11.7%
Eastern Europe and Danube	Yes	Uptake of no-ti 2010 (Eurostat)	ill in selected countries as % of arable in):
		Bulgaria	55.3%
		Czech Republic	32.3%
		Hungary	10.8%
		Austria	23.8%
		Romania	2.3%
		Slovakia	16.9%

IV. <u>Scale</u>

	0-0.1km ²	0.1- 1.0km ²	1-10km ²	10- 100km ²	100- 1000km ²	>1000k m ²
Upstream Drainage Area/Catchment Area	~	✓				
Evidence	whole farm operations Implement	s may be con limit potentia	nstrained by al for reduce rger areas ma	crop rotation d tillage in fo	larger scales as where harv ollowing crop nificant coor	vesting s.

V. Biophysical Impacts

Biop	hysical Impacts	Rating	Evidence
unoff	Store Runoff	None	
Slowing & Storing Runoff	Slow Runoff	None	
ng & St	Store River Water	None	
Slowi	Slow River Water	None	
	Increase Evapotranspiration	None	
	Increase Infiltration and/or groundwater recharge	None	
Reducing Runoff	Increase soil water retention	Medium	 BIO Intelligence Service (2014) report on a study in Hungary where a 32% runoff reduction was achieved: Average runoff volumes of 172.6 m³/ha versus 453.8m³/ha in conventional plots) Water storage in the upper 20 cm increased by 8.8%, below 20 cm water content increased by 1.7% However, Bescansa et al. (2006) in a study in Northern Spain found that there is no significant different between reduced tillage and mouldboard tillage. Soil water retention characteristics in the upper soil layer (0-0.15 m) are reported across a range of matric potential of water values: 0 kPa: 0.435 m³/m³ for reduced tillage versus 0.431 m³/m³ for mouldboard tillage -33 kPa: 0.322 versus 0.326 m³/m³ -50 kPa: 0.291 versus 0.287 m³/m³ 1500 kPa: 0.219 versus 0.217 m³/m³
Reducing Pollution	Reduce pollutant sources	None	 Meyer-Aurich (2005) reports nitrogen balance surpluses for the following systems based on field studies and expert judgement in Bavaria: Potato: -62 to -25 kg N/ha with reduced tillage and catch crops (conventional: -89 to -2) Maize: 75 kg N/ha (conventional: 52) Winter wheat : -25 to -15 kg N/ha in both cases

			• Winter barley: 2 to -35 kg For the potato and maize systems difference in nitrogen balance sur conventional and reduced tillage used, this suggests that is these ra is driving the nitrogen balance.	s there was no rplus between th where catch cro	ne ps are
	Intercept pollution pathways				
			Meyer-Aurich (2005) uses the Un Equation (USLE) to estimate ero factor) for different systems. The and maize are:	sion susceptibili	ity (C
			Tillage system	Potato	Maize
			Conventional tillage	0.30-0.37	0.24-0.25
	Reduce erosion and/or sediment	Medium	Conventional tillage + catch crop	0.13-0.17	0.07-0.08
	delivery	Wiedium	Reduced tillage + catch crop	0.02-0.14	0.01-0.07
rvation			These indicate that the application catch crops both reduce soil eross wheat and winter barley where cat applied there was no difference be systems.	ion. However fo	or winter not
Soil Conservation			Bescana et al. (2006) report the for physical properties:	ollowing results	for soil
			 Organic matter (g/kg): 0-0.15m depth: 18.2 for r 16.3 for mouldboard tillage 	0	ersus
			• 0.15-0.30m depth: 16.5 fo 16.1 for mouldboard tilla	0	e versus
	Improve soils	Medium	Bulk density (t/m^3) :		
			• 0-0.15m depth: 1.50 for r 1.52 for mouldboard tilla	0	ersus
			• 0.15-0.30m depth: 1.65 fo 1.51 for mouldboard	or reduced tillage	e versus
			The differences between the two for organic matter within 0-0.15m density at 0.15-0.30m depth, indi- are variable and occur in differen	n depth and for cating that the in	bulk npacts

Creating Habitat	Create aquatic habitat	None	
	Create riparian habitat	None	
Crea	Create terrestrial habitat	None	
Climate Alteration	Enhance precipitation	None	
	Reduce peak temperature	None	
Clima	Absorb and/or retain CO ₂	None	

VI. Ecosystem Services Benefits

Ecosys	stem Services	Rating	Evidence
Provisioning	Food provision	Low	Bescansa et al (2006) report no significant difference in 5-year average barley yields for reduced tillage (4.85 t/ha) versus mouldboard tillage (4.61 t/ha), although the reduced tillage system was more efficient due to lower production costs. Schmid et al (2004) report on the impact of different reduced tillage and cover crop systems on sugar beet in Austria. Yields for the reduced tillage systems were similar with a range of 109.8 to 120.6 dt/ha compared to a range of 118.7 to 121.9 dt/ha for conventional tillage. The yields for both these treatments were below the conventional tillage without cover crop control treatment yield of 130.3 dt/ha.
	Water Storage	None	
	Fish stocks and recruiting	None	
	Natural biomass production	None	
pr	Biodiversity preservation	None	
Regulatory and Maintenance	Climate change adaptation and mitigation	Low	 Meyer-Aurich (2005) reports global warming potentials of reduced versus conventional tillage systems: Potato: 1.63 tCO₂e with reduced tillage and catch crops versus 1.32 for conventional Corn: 3.67 versus 3.36

			• Winter wheat: 1.82 versus 1.83
			• Winter barley: 1.83 versus 1.84
			Hangen et al. (2002) report that the degree of infiltration potential in a silty (Luvisol) soil was higher under conservation tillage than conventional tillage. Continuous macropores reached a depth of 120cm in conservation tillage plots compared to 50cm under conventional tillage. However, in a sandy loam soil (Podzolluvisol) the presence of mulch residues in the conservation tillage plot prevented water transport beneath 5cm depth compared to a water depth of 20cm under conventional tillage.
	Groundwater / aquifer recharge	Medium	Capwiez et al (2009) report that tillage practices did not change water infiltration as the increase in macroporosity in reduced tillage soils were offset by a significant increase in soil bulk density (1.49 mg/m ³ versus 1.27 mg/m ³ for reduced and conventional tillage respectively). This was influenced by experimental cropping systems designed to investigate different degrees of soil compaction. A further factor was the abundance and composition of earthworms which were higher in reduced tillage plots but negatively affected by compaction.
	Flood risk reduction	None	
	Erosion / sediment control	None	
	Filtration of pollutants	None	
Cultural	Recreational opportunities	None	
Cult	Aesthetic / cultural value	None	
	Navigation	None	
Abiotic	Geological resources	None	
	Energy production	None	

VII. Policy Objectives

Policy	Objective	Rating	Evidence		
Water	Framework Directive	2			
r Status	Improving status of biological quality elements	None			
Achieve Good Surface Water Status	Improving status of physico-chemical quality elements	None			
e Good Su	Improving status of hydromorphological quality elements	Medium	Reduced tillage contributes to this objective through the reductions in soil erosion and consequent sediment delivery.		
Achieve	Improving chemical status and priority substances	None			
ieve I GW	Improved quantitative status	None			
Achieve Good GW	Improved chemical status	None			
Prevent Deterioration	Prevent surface water status deterioration	Medium	Reduced tillage contributes to this objective through the reductions in soil erosion and consequent sediment delivery.		
Prev Deterio	Prevent groundwater status deterioration	None			
Floods	Directive				
ordinat	lequate and co- ed measures to flood risks	Medium	Catchment level promotion of reduced tillage together with other agricultural measures is likely to be necessary to impact on flood risks		
Habita	ts and Birds Directiv	ves			
Protection of Important Habitats		None			
2020 Biodiversity Strategy					
ecosyst	Better protection for ecosystems and more use of Green Infrastructure		Reduced tillage contributes to this objective through the reductions in soil erosion and consequent sediment delivery.		
More sustainable agriculture and forestry		Low	Reduced tillage offers a number of potential benefits that could contribute to sustainable agriculture; these are often when it used in conjunction with other measures such as cover crops or controlled traffic farming.		

A7: Low till agriculture

		However, these benefits are often not consistent and negative impacts may arise due to conditions such as soil type and climate. Use of the measure may also be constrained by crop types.
Better management of fish stocks	None	
Prevention of biodiversity loss	Low	There is evidence of higher soil biodiversity that may in turn support wider biodiversity. Associated practices such as maintaining winter cover may also be beneficial.

VIII. <u>Design Guidance</u>

Design Parameters	Evidence
Dimensions	
Space required	
Location	
Site and slope stability	
Soils and groundwater	
Pre-treatment requirements	
Synergies with Other Measures	Reduced tillage can be combined with other agricultural measures. Those of particular relevance include green cover/cover crops, mulching, controlled traffic farming. Controlled traffic farming is especially relevant as it can help to avoid problems of soil compaction due to machinery movements, particularly on the wetter soils typical of northern Europe. However, as reported by Hangen et al. (2002) the presence of crop or mulch residues may reduce the effectiveness of reduced tillage for water infiltration.
Design recommendations	

IX. <u>Cost</u>

Cost Category	Cost Range	Evidence
Land Acquisition	0	Measure is a change in land management practices and does not involve land acquisition
Investigations & Studies Capital Costs	0 Discing (€/ha):	Measure does not require pre-implementation studies Capital costs may involve purchase of new cultivation
	32-67 Rotor-spike/ power horrow (€/ha): 47-65 Multi harrowing (€/ha): 30-55	machinery for practices such as discing and harrowing. The costs here are contractor charges per ha for these activities based on SAC (2013). The costs include a capital element, also included are the labour costs of the driver but not fuel. These costs compare to 50 – 68 €/ha for ploughing.
Maintenance Costs	Non-Inversion: Disc + Cultivator drill (ℓ /ha) 100 - 113 Non-Inversion: Combination Machines (ℓ /ha) 77 Minimum/Shallow Tillage(ℓ /ha) 47 - 86 Direct Drill(ℓ /ha) 47 - 59	 Operational costs are derived from ADAS (2001) based on per ha values. These compare to 113 – 143 €/ha for conventional tillage (Plough + power harrow + air drill) The different practices require different labour inputs the following are in minutes per ha: Plough + power harrow + air drill: 204-254 Non-Inversion: Disc + Cultivator drill: 52-68 Non-Inversion: Combination Machines: 47 Minimum/Shallow Tillage: 44-63 Direct Drill: 23-38 The exact cost implications will depend on factors such as soil type, slope etc. Biedermann (2013) reports average total cost reduction of €10000 per farm for reduced tillage.
Additional Costs	0	

Values in £ converted at £1 = €1.20

Requirement	Evidence
Farm advice and demonstration	Uptake of measures such as conservation tillage involve uncertainty for farmers including potential trade-offs of yield and input costs. The full benefits may not be realised for several years post implementation. Demonstration of the benefits and advice to tailor the techniques to the circumstances of individual farms are important.

X. Governance and Implementation

XI. Incentives supporting the financing of the NWRM

Туре	Evidence
Rural Development	Low till agriculture can be included as a soil management measure under
payments for associated	the Rural Development Regulation. In the 2007-13 RDPs soil management
measures	payments across the EU averaged 97 €/ha with a range of 94 to 100 €/ha

XII. <u>References</u>

Reference

ADAS (2001) The Development of National Guidelines for Sustainable Soil Management Through Improved Tillage Practices, Final report to Defra SP0513, ADAS Consulting Ltd.

Basch G, Geraghty J, Streit B and Sturny W (2009) No-tillage in Europe – State of the Art: Constraints and Perspectives, No-Till Farming Systems, World Association for Soil and Water Conservation – Special Publication No. 3 (first published 2008 and updated in 2009)

Bescansa P, Imaz MJ, Virto I, Enrique A and Hoogmoed WB (2006) Soil water retention as affected by tillage and residue management in semiarid Spain, Soil & Tillage Research 87(1): 19–27

Biedermann,G., Economic aspects of mulch and direct seeding- reduction of soil treatment, which changes in the operational result have to be expected? 2013 Alterra 2005-2008

http://www.lko.at/mmedia/download/2013.07.15/137387831334361.pdf

(in German)

Also reported in the 'No Tillage Field Trials in Lower Austria case study

BIO Intelligence Service (2014), Soil and water in a changing environment, Final Report prepared for European Commission (DG ENV), with support from HydroLogic

http://ec.europa.eu/environment/soil/pdf/Soil%20and%20Water.pdf

Capowiez Y, Cadoux S, Bouchant P, Ruy S, Roger-Estrade J, Richard G and Boizard H (2009) The effect of tillage type and cropping system on earthworm communities, macroporosity and water infiltration, Soil & Tillage Research 105: 209-216

Eurostat Agricultural Statistics

http://epp.eurostat.ec.europa.eu/portal/page/portal/agriculture/data/database

Hangen E, Buckzo U, Bens O, Brunotte J and Hüttl RF (2002) Infiltration patterns into two soils under conventional and conservation tillage: influence of the spatial distribution of plant root structure and soil animal activity, Soil & Tillage Research 62: 181-186

Meyer-Aurich A (2005) Economic and environmental analysis of sustainable farming practices – a Bavarian case study, Agricultural Systems 86: 190-206

This paper uses a linear programming model to estimate the economic impact of different farming practices.

SAC (2013) The Farm Management Handbook 2013/14, 34th Edition, SAC Consulting Ltd.