Member State report / Art11 / 2020 / D1-P / Baltic

Report type Member State report to Commission
MSFD Article Art. 11 Monitoring programmes (and Art. 17 updates)
Report due 2020-10-15
GES Descriptor D1 Pelagic habitats
Region/subregion Baltic

Member state
DE
DE
DE
EE
EE
EE
EE
EE
EE
EE
EE
EE
EE
EE
FI
FI
FI
FI
FI
FI
FI
LT
LT
LT
LT
LT
LT
LT
LT
LV
PL
PL
PL
PL
SE
SE
SE
SE
SE
SE
SE
Descriptor
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
D1.6
Monitoring strategy description
Das Monitoring der pelagischen Habitate liefert Daten über Artenzusammensetzung, Abundanz, Gesamtbiomasse sowie Biomasse funktioneller Gruppen der vorherrschenden Phyto- und Zooplanktongemeinschaften. In Kombination mit den ebenfalls erhobenen Daten zu möglichen Belastungen werden darüber Teilaspekte des Deskriptors Biodiversität sowie Nahrungsnetze abgedeckt. In den Küstengewässern und der offenen Ostsee wird das Phyto- und Zooplanktonmonitoring seit vielen Jahren durchgeführt. Einige Zooplankton- und Phytoplanktonindikatoren befinden sich momentan bei HELCOM noch in Entwicklung. Hinsichtlich des Zooplanktonmonitorings erfordert der HELCOM-Indikator „Zooplankton mittlere Größe und Abundanz“ eine regelmäßige Erfassung mit einer ausreichend hohen, d. h. eine zuverlässige Bewertung ermöglichenden Messfrequenz insbesondere im relevanten Bewertungszeitraum Juni - September. Darüber hinaus wird das Planktonmonitoring in den Küstengewässern und der offenen Ostsee zukünftig parallel zur Indikatorenentwicklung an diese angepasst. Der Zustand der pelagischen Habitate ist im Wesentlichen durch Eutrophierung beeinträchtigt. Die Belastungen werden somit im Rahmen des Eutrophierungsmonitorings erhoben. Über die Eutrophierungsbewertung von HELCOM (HEAT) und die HELCOM PLC Berichterstattung sowie die ökologische Zustandsbewertung nach WRRL werden unterschiedliche Belastungssituationen identifiziert, so dass das Monitoring entsprechend differenziert erfolgen kann. Mit der Weiterentwicklung der Planktonindikatoren unter HELCOM, der weiteren Konkretisierung und Quantifizierung der Umweltziele sowie der Überprüfung der Maßnahmeneffizienz und Aktualisierung des Maßnahmenprogramms werden ggf. noch weitere Anpassungen des Monitorings erforderlich. Da sich gegenwärtig sowohl die Küstengewässer als auch die offene Ostsee nicht in einem guten Zustand hinsichtlich Eutrophierung befinden und deshalb davon ausgegangen wird, dass sich die pelagischen Habitate ebenfalls nicht in einem guten Zustand befinden, erfolgt ein flächendeckendes Monitoring und ein risikobasierter Ansatz wird nicht angewendet.
Das Monitoring der pelagischen Habitate liefert Daten über Artenzusammensetzung, Abundanz, Gesamtbiomasse sowie Biomasse funktioneller Gruppen der vorherrschenden Phyto- und Zooplanktongemeinschaften. In Kombination mit den ebenfalls erhobenen Daten zu möglichen Belastungen werden darüber Teilaspekte des Deskriptors Biodiversität sowie Nahrungsnetze abgedeckt. In den Küstengewässern und der offenen Ostsee wird das Phyto- und Zooplanktonmonitoring seit vielen Jahren durchgeführt. Einige Zooplankton- und Phytoplanktonindikatoren befinden sich momentan bei HELCOM noch in Entwicklung. Hinsichtlich des Zooplanktonmonitorings erfordert der HELCOM-Indikator „Zooplankton mittlere Größe und Abundanz“ eine regelmäßige Erfassung mit einer ausreichend hohen, d. h. eine zuverlässige Bewertung ermöglichenden Messfrequenz insbesondere im relevanten Bewertungszeitraum Juni - September. Darüber hinaus wird das Planktonmonitoring in den Küstengewässern und der offenen Ostsee zukünftig parallel zur Indikatorenentwicklung an diese angepasst. Der Zustand der pelagischen Habitate ist im Wesentlichen durch Eutrophierung beeinträchtigt. Die Belastungen werden somit im Rahmen des Eutrophierungsmonitorings erhoben. Über die Eutrophierungsbewertung von HELCOM (HEAT) und die HELCOM PLC Berichterstattung sowie die ökologische Zustandsbewertung nach WRRL werden unterschiedliche Belastungssituationen identifiziert, so dass das Monitoring entsprechend differenziert erfolgen kann. Mit der Weiterentwicklung der Planktonindikatoren unter HELCOM, der weiteren Konkretisierung und Quantifizierung der Umweltziele sowie der Überprüfung der Maßnahmeneffizienz und Aktualisierung des Maßnahmenprogramms werden ggf. noch weitere Anpassungen des Monitorings erforderlich. Da sich gegenwärtig sowohl die Küstengewässer als auch die offene Ostsee nicht in einem guten Zustand hinsichtlich Eutrophierung befinden und deshalb davon ausgegangen wird, dass sich die pelagischen Habitate ebenfalls nicht in einem guten Zustand befinden, erfolgt ein flächendeckendes Monitoring und ein risikobasierter Ansatz wird nicht angewendet.
Das Monitoring der pelagischen Habitate liefert Daten über Artenzusammensetzung, Abundanz, Gesamtbiomasse sowie Biomasse funktioneller Gruppen der vorherrschenden Phyto- und Zooplanktongemeinschaften. In Kombination mit den ebenfalls erhobenen Daten zu möglichen Belastungen werden darüber Teilaspekte des Deskriptors Biodiversität sowie Nahrungsnetze abgedeckt. In den Küstengewässern und der offenen Ostsee wird das Phyto- und Zooplanktonmonitoring seit vielen Jahren durchgeführt. Einige Zooplankton- und Phytoplanktonindikatoren befinden sich momentan bei HELCOM noch in Entwicklung. Hinsichtlich des Zooplanktonmonitorings erfordert der HELCOM-Indikator „Zooplankton mittlere Größe und Abundanz“ eine regelmäßige Erfassung mit einer ausreichend hohen, d. h. eine zuverlässige Bewertung ermöglichenden Messfrequenz insbesondere im relevanten Bewertungszeitraum Juni - September. Darüber hinaus wird das Planktonmonitoring in den Küstengewässern und der offenen Ostsee zukünftig parallel zur Indikatorenentwicklung an diese angepasst. Der Zustand der pelagischen Habitate ist im Wesentlichen durch Eutrophierung beeinträchtigt. Die Belastungen werden somit im Rahmen des Eutrophierungsmonitorings erhoben. Über die Eutrophierungsbewertung von HELCOM (HEAT) und die HELCOM PLC Berichterstattung sowie die ökologische Zustandsbewertung nach WRRL werden unterschiedliche Belastungssituationen identifiziert, so dass das Monitoring entsprechend differenziert erfolgen kann. Mit der Weiterentwicklung der Planktonindikatoren unter HELCOM, der weiteren Konkretisierung und Quantifizierung der Umweltziele sowie der Überprüfung der Maßnahmeneffizienz und Aktualisierung des Maßnahmenprogramms werden ggf. noch weitere Anpassungen des Monitorings erforderlich. Da sich gegenwärtig sowohl die Küstengewässer als auch die offene Ostsee nicht in einem guten Zustand hinsichtlich Eutrophierung befinden und deshalb davon ausgegangen wird, dass sich die pelagischen Habitate ebenfalls nicht in einem guten Zustand befinden, erfolgt ein flächendeckendes Monitoring und ein risikobasierter Ansatz wird nicht angewendet.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The aim of the monitoring strategy "SD1.6 – Biological diversity – pelagic habitats” is to assess the status of pelagic habitats by collecting data on species composition, abundance and biomass of phytoplankton and zooplankton communities, as well as the physical and chemical conditions influencing their distribution and diversity. Following monitoring programmes produce data for the assessments of the status and impact, as well as pressures in the marine environment: "Phytoplankton species composition, abundance and biomass", "Zooplankton species composition, abundance and biomass", "Water column – physical characteristics", "Water column – chemical characteristics", "Nutrients in the water column", "Hydrological characteristics", "Ice", and "Non-indigenous species – harbours and adjacent regions". The main anthropogenic pressure to the pelagic habitats is the input of nutrients that is monitored in the frames of the programme “Inputs of nutrients and hazardous substances – land-based sources”. Information on the uses and human activities affecting the pelagic habitats is collected in the programme “Marine and coastal activities”.
The programme consists of five sub-programmes, three of which provide information on the biological agents of the water column: Coastal and offshore animal and phytoplankton, as well as the number of microbials in coastal bathing areas. Two sub-programmes provide information on changes in basic physical characteristics of the sea, wave, water level and ice. In addition, sub-programmes for water chemical status and phytoplankton pigments support this programme.
The programme consists of five sub-programmes, three of which provide information on the biological agents of the water column: Coastal and offshore animal and phytoplankton, as well as the number of microbials in coastal bathing areas. Two sub-programmes provide information on changes in basic physical characteristics of the sea, wave, water level and ice. In addition, sub-programmes for water chemical status and phytoplankton pigments support this programme.
The programme consists of five sub-programmes, three of which provide information on the biological agents of the water column: Coastal and offshore animal and phytoplankton, as well as the number of microbials in coastal bathing areas. Two sub-programmes provide information on changes in basic physical characteristics of the sea, wave, water level and ice. In addition, sub-programmes for water chemical status and phytoplankton pigments support this programme.
The programme consists of five sub-programmes, three of which provide information on the biological agents of the water column: Coastal and offshore animal and phytoplankton, as well as the number of microbials in coastal bathing areas. Two sub-programmes provide information on changes in basic physical characteristics of the sea, wave, water level and ice. In addition, sub-programmes for water chemical status and phytoplankton pigments support this programme.
The programme consists of five sub-programmes, three of which provide information on the biological agents of the water column: Coastal and offshore animal and phytoplankton, as well as the number of microbials in coastal bathing areas. Two sub-programmes provide information on changes in basic physical characteristics of the sea, wave, water level and ice. In addition, sub-programmes for water chemical status and phytoplankton pigments support this programme.
The programme consists of five sub-programmes, three of which provide information on the biological agents of the water column: Coastal and offshore animal and phytoplankton, as well as the number of microbials in coastal bathing areas. Two sub-programmes provide information on changes in basic physical characteristics of the sea, wave, water level and ice. In addition, sub-programmes for water chemical status and phytoplankton pigments support this programme.
The programme consists of five sub-programmes, three of which provide information on the biological agents of the water column: Coastal and offshore animal and phytoplankton, as well as the number of microbials in coastal bathing areas. Two sub-programmes provide information on changes in basic physical characteristics of the sea, wave, water level and ice. In addition, sub-programmes for water chemical status and phytoplankton pigments support this programme.
Pagal Baltijos jūros povandeninių biotopų, buveinių ir biotopų kompleksų klasifikaciją, Lietuvos jūros rajone yra išskiriami 4 vyraujančių pelaginių buveinių tipai (AD.N5; AE.N5; AE.O5 ir AE.O6). Pelaginių buveinių gylių diapazonai buvo nustatyti pagal fotinės zonos ir haloklino padėtį centrinėje Baltijos jūros dalyje. Valstybinėje 2018-2023 m. aplinkos monitoringo programoje numatyti pelaginės abiotinės aplinkos (druskingumo, temperatūros, deguonies (esant deguonies stygiui – sieros vandenilio, pH) tyrimai, taip pat ir biotinių elementų (fitoplanktono, zooplanktono) matavimai. Didžiausia rodiklių verčių kaita matuojama fotinėje oksinėje zonoje virš haloklino (AD.N5), čia fiksuojamas Kuršių marių vandenų poveikis, todėl rodikliai čia matuojami iki 4-7 kartų per metus (intensyviau vegetacijos periodu); AE.N5 – iki 4 kartų per metus (kartą kiekvieną sezoną); AE.O5 ir AE.O6 – dažniausiai 1 kartą per metus. HELCOM HOLAS II metu pelaginių buveinių būklės vertinimui buvo panaudoti 5 pelaginių buveinių rodikliai 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Diatominių / Dinoflageliatų indeksas“; 4) „Chlorofilas-a“ ir 5) „Cianobakterijų žydėjimo indeksas“. Rodikliai yra taikytini buveinei AD.N5 „Baltijos jūros fotinė oksinė pelaginė zona virš haloklino“, nes kitoms buveinėms vertinimo rodikliai HELCOM (2018a) nėra sukurti. Iš HELCOM pasiūlytų rodiklių Lietuvos jūros rajonui (buveinei AD.N5) taikomi rodikliai: 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Chlorofilas-a“. Zooplanktono vidutinio dydžio ir bendro ištekliaus rodiklis taikomas ir giliau Lietuvos jūriniame rajone esančioms buveinėms (AE.N5 ir AE.O5).
Pagal Baltijos jūros povandeninių biotopų, buveinių ir biotopų kompleksų klasifikaciją, Lietuvos jūros rajone yra išskiriami 4 vyraujančių pelaginių buveinių tipai (AD.N5; AE.N5; AE.O5 ir AE.O6). Pelaginių buveinių gylių diapazonai buvo nustatyti pagal fotinės zonos ir haloklino padėtį centrinėje Baltijos jūros dalyje. Valstybinėje 2018-2023 m. aplinkos monitoringo programoje numatyti pelaginės abiotinės aplinkos (druskingumo, temperatūros, deguonies (esant deguonies stygiui – sieros vandenilio, pH) tyrimai, taip pat ir biotinių elementų (fitoplanktono, zooplanktono) matavimai. Didžiausia rodiklių verčių kaita matuojama fotinėje oksinėje zonoje virš haloklino (AD.N5), čia fiksuojamas Kuršių marių vandenų poveikis, todėl rodikliai čia matuojami iki 4-7 kartų per metus (intensyviau vegetacijos periodu); AE.N5 – iki 4 kartų per metus (kartą kiekvieną sezoną); AE.O5 ir AE.O6 – dažniausiai 1 kartą per metus. HELCOM HOLAS II metu pelaginių buveinių būklės vertinimui buvo panaudoti 5 pelaginių buveinių rodikliai 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Diatominių / Dinoflageliatų indeksas“; 4) „Chlorofilas-a“ ir 5) „Cianobakterijų žydėjimo indeksas“. Rodikliai yra taikytini buveinei AD.N5 „Baltijos jūros fotinė oksinė pelaginė zona virš haloklino“, nes kitoms buveinėms vertinimo rodikliai HELCOM (2018a) nėra sukurti. Iš HELCOM pasiūlytų rodiklių Lietuvos jūros rajonui (buveinei AD.N5) taikomi rodikliai: 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Chlorofilas-a“. Zooplanktono vidutinio dydžio ir bendro ištekliaus rodiklis taikomas ir giliau Lietuvos jūriniame rajone esančioms buveinėms (AE.N5 ir AE.O5).
Pagal Baltijos jūros povandeninių biotopų, buveinių ir biotopų kompleksų klasifikaciją, Lietuvos jūros rajone yra išskiriami 4 vyraujančių pelaginių buveinių tipai (AD.N5; AE.N5; AE.O5 ir AE.O6). Pelaginių buveinių gylių diapazonai buvo nustatyti pagal fotinės zonos ir haloklino padėtį centrinėje Baltijos jūros dalyje. Valstybinėje 2018-2023 m. aplinkos monitoringo programoje numatyti pelaginės abiotinės aplinkos (druskingumo, temperatūros, deguonies (esant deguonies stygiui – sieros vandenilio, pH) tyrimai, taip pat ir biotinių elementų (fitoplanktono, zooplanktono) matavimai. Didžiausia rodiklių verčių kaita matuojama fotinėje oksinėje zonoje virš haloklino (AD.N5), čia fiksuojamas Kuršių marių vandenų poveikis, todėl rodikliai čia matuojami iki 4-7 kartų per metus (intensyviau vegetacijos periodu); AE.N5 – iki 4 kartų per metus (kartą kiekvieną sezoną); AE.O5 ir AE.O6 – dažniausiai 1 kartą per metus. HELCOM HOLAS II metu pelaginių buveinių būklės vertinimui buvo panaudoti 5 pelaginių buveinių rodikliai 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Diatominių / Dinoflageliatų indeksas“; 4) „Chlorofilas-a“ ir 5) „Cianobakterijų žydėjimo indeksas“. Rodikliai yra taikytini buveinei AD.N5 „Baltijos jūros fotinė oksinė pelaginė zona virš haloklino“, nes kitoms buveinėms vertinimo rodikliai HELCOM (2018a) nėra sukurti. Iš HELCOM pasiūlytų rodiklių Lietuvos jūros rajonui (buveinei AD.N5) taikomi rodikliai: 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Chlorofilas-a“. Zooplanktono vidutinio dydžio ir bendro ištekliaus rodiklis taikomas ir giliau Lietuvos jūriniame rajone esančioms buveinėms (AE.N5 ir AE.O5).
Pagal Baltijos jūros povandeninių biotopų, buveinių ir biotopų kompleksų klasifikaciją, Lietuvos jūros rajone yra išskiriami 4 vyraujančių pelaginių buveinių tipai (AD.N5; AE.N5; AE.O5 ir AE.O6). Pelaginių buveinių gylių diapazonai buvo nustatyti pagal fotinės zonos ir haloklino padėtį centrinėje Baltijos jūros dalyje. Valstybinėje 2018-2023 m. aplinkos monitoringo programoje numatyti pelaginės abiotinės aplinkos (druskingumo, temperatūros, deguonies (esant deguonies stygiui – sieros vandenilio, pH) tyrimai, taip pat ir biotinių elementų (fitoplanktono, zooplanktono) matavimai. Didžiausia rodiklių verčių kaita matuojama fotinėje oksinėje zonoje virš haloklino (AD.N5), čia fiksuojamas Kuršių marių vandenų poveikis, todėl rodikliai čia matuojami iki 4-7 kartų per metus (intensyviau vegetacijos periodu); AE.N5 – iki 4 kartų per metus (kartą kiekvieną sezoną); AE.O5 ir AE.O6 – dažniausiai 1 kartą per metus. HELCOM HOLAS II metu pelaginių buveinių būklės vertinimui buvo panaudoti 5 pelaginių buveinių rodikliai 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Diatominių / Dinoflageliatų indeksas“; 4) „Chlorofilas-a“ ir 5) „Cianobakterijų žydėjimo indeksas“. Rodikliai yra taikytini buveinei AD.N5 „Baltijos jūros fotinė oksinė pelaginė zona virš haloklino“, nes kitoms buveinėms vertinimo rodikliai HELCOM (2018a) nėra sukurti. Iš HELCOM pasiūlytų rodiklių Lietuvos jūros rajonui (buveinei AD.N5) taikomi rodikliai: 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Chlorofilas-a“. Zooplanktono vidutinio dydžio ir bendro ištekliaus rodiklis taikomas ir giliau Lietuvos jūriniame rajone esančioms buveinėms (AE.N5 ir AE.O5).
Pagal Baltijos jūros povandeninių biotopų, buveinių ir biotopų kompleksų klasifikaciją, Lietuvos jūros rajone yra išskiriami 4 vyraujančių pelaginių buveinių tipai (AD.N5; AE.N5; AE.O5 ir AE.O6). Pelaginių buveinių gylių diapazonai buvo nustatyti pagal fotinės zonos ir haloklino padėtį centrinėje Baltijos jūros dalyje. Valstybinėje 2018-2023 m. aplinkos monitoringo programoje numatyti pelaginės abiotinės aplinkos (druskingumo, temperatūros, deguonies (esant deguonies stygiui – sieros vandenilio, pH) tyrimai, taip pat ir biotinių elementų (fitoplanktono, zooplanktono) matavimai. Didžiausia rodiklių verčių kaita matuojama fotinėje oksinėje zonoje virš haloklino (AD.N5), čia fiksuojamas Kuršių marių vandenų poveikis, todėl rodikliai čia matuojami iki 4-7 kartų per metus (intensyviau vegetacijos periodu); AE.N5 – iki 4 kartų per metus (kartą kiekvieną sezoną); AE.O5 ir AE.O6 – dažniausiai 1 kartą per metus. HELCOM HOLAS II metu pelaginių buveinių būklės vertinimui buvo panaudoti 5 pelaginių buveinių rodikliai 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Diatominių / Dinoflageliatų indeksas“; 4) „Chlorofilas-a“ ir 5) „Cianobakterijų žydėjimo indeksas“. Rodikliai yra taikytini buveinei AD.N5 „Baltijos jūros fotinė oksinė pelaginė zona virš haloklino“, nes kitoms buveinėms vertinimo rodikliai HELCOM (2018a) nėra sukurti. Iš HELCOM pasiūlytų rodiklių Lietuvos jūros rajonui (buveinei AD.N5) taikomi rodikliai: 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Chlorofilas-a“. Zooplanktono vidutinio dydžio ir bendro ištekliaus rodiklis taikomas ir giliau Lietuvos jūriniame rajone esančioms buveinėms (AE.N5 ir AE.O5).
Pagal Baltijos jūros povandeninių biotopų, buveinių ir biotopų kompleksų klasifikaciją, Lietuvos jūros rajone yra išskiriami 4 vyraujančių pelaginių buveinių tipai (AD.N5; AE.N5; AE.O5 ir AE.O6). Pelaginių buveinių gylių diapazonai buvo nustatyti pagal fotinės zonos ir haloklino padėtį centrinėje Baltijos jūros dalyje. Valstybinėje 2018-2023 m. aplinkos monitoringo programoje numatyti pelaginės abiotinės aplinkos (druskingumo, temperatūros, deguonies (esant deguonies stygiui – sieros vandenilio, pH) tyrimai, taip pat ir biotinių elementų (fitoplanktono, zooplanktono) matavimai. Didžiausia rodiklių verčių kaita matuojama fotinėje oksinėje zonoje virš haloklino (AD.N5), čia fiksuojamas Kuršių marių vandenų poveikis, todėl rodikliai čia matuojami iki 4-7 kartų per metus (intensyviau vegetacijos periodu); AE.N5 – iki 4 kartų per metus (kartą kiekvieną sezoną); AE.O5 ir AE.O6 – dažniausiai 1 kartą per metus. HELCOM HOLAS II metu pelaginių buveinių būklės vertinimui buvo panaudoti 5 pelaginių buveinių rodikliai 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Diatominių / Dinoflageliatų indeksas“; 4) „Chlorofilas-a“ ir 5) „Cianobakterijų žydėjimo indeksas“. Rodikliai yra taikytini buveinei AD.N5 „Baltijos jūros fotinė oksinė pelaginė zona virš haloklino“, nes kitoms buveinėms vertinimo rodikliai HELCOM (2018a) nėra sukurti. Iš HELCOM pasiūlytų rodiklių Lietuvos jūros rajonui (buveinei AD.N5) taikomi rodikliai: 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Chlorofilas-a“. Zooplanktono vidutinio dydžio ir bendro ištekliaus rodiklis taikomas ir giliau Lietuvos jūriniame rajone esančioms buveinėms (AE.N5 ir AE.O5).
Pagal Baltijos jūros povandeninių biotopų, buveinių ir biotopų kompleksų klasifikaciją, Lietuvos jūros rajone yra išskiriami 4 vyraujančių pelaginių buveinių tipai (AD.N5; AE.N5; AE.O5 ir AE.O6). Pelaginių buveinių gylių diapazonai buvo nustatyti pagal fotinės zonos ir haloklino padėtį centrinėje Baltijos jūros dalyje. Valstybinėje 2018-2023 m. aplinkos monitoringo programoje numatyti pelaginės abiotinės aplinkos (druskingumo, temperatūros, deguonies (esant deguonies stygiui – sieros vandenilio, pH) tyrimai, taip pat ir biotinių elementų (fitoplanktono, zooplanktono) matavimai. Didžiausia rodiklių verčių kaita matuojama fotinėje oksinėje zonoje virš haloklino (AD.N5), čia fiksuojamas Kuršių marių vandenų poveikis, todėl rodikliai čia matuojami iki 4-7 kartų per metus (intensyviau vegetacijos periodu); AE.N5 – iki 4 kartų per metus (kartą kiekvieną sezoną); AE.O5 ir AE.O6 – dažniausiai 1 kartą per metus. HELCOM HOLAS II metu pelaginių buveinių būklės vertinimui buvo panaudoti 5 pelaginių buveinių rodikliai 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Diatominių / Dinoflageliatų indeksas“; 4) „Chlorofilas-a“ ir 5) „Cianobakterijų žydėjimo indeksas“. Rodikliai yra taikytini buveinei AD.N5 „Baltijos jūros fotinė oksinė pelaginė zona virš haloklino“, nes kitoms buveinėms vertinimo rodikliai HELCOM (2018a) nėra sukurti. Iš HELCOM pasiūlytų rodiklių Lietuvos jūros rajonui (buveinei AD.N5) taikomi rodikliai: 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Chlorofilas-a“. Zooplanktono vidutinio dydžio ir bendro ištekliaus rodiklis taikomas ir giliau Lietuvos jūriniame rajone esančioms buveinėms (AE.N5 ir AE.O5).
Pagal Baltijos jūros povandeninių biotopų, buveinių ir biotopų kompleksų klasifikaciją, Lietuvos jūros rajone yra išskiriami 4 vyraujančių pelaginių buveinių tipai (AD.N5; AE.N5; AE.O5 ir AE.O6). Pelaginių buveinių gylių diapazonai buvo nustatyti pagal fotinės zonos ir haloklino padėtį centrinėje Baltijos jūros dalyje. Valstybinėje 2018-2023 m. aplinkos monitoringo programoje numatyti pelaginės abiotinės aplinkos (druskingumo, temperatūros, deguonies (esant deguonies stygiui – sieros vandenilio, pH) tyrimai, taip pat ir biotinių elementų (fitoplanktono, zooplanktono) matavimai. Didžiausia rodiklių verčių kaita matuojama fotinėje oksinėje zonoje virš haloklino (AD.N5), čia fiksuojamas Kuršių marių vandenų poveikis, todėl rodikliai čia matuojami iki 4-7 kartų per metus (intensyviau vegetacijos periodu); AE.N5 – iki 4 kartų per metus (kartą kiekvieną sezoną); AE.O5 ir AE.O6 – dažniausiai 1 kartą per metus. HELCOM HOLAS II metu pelaginių buveinių būklės vertinimui buvo panaudoti 5 pelaginių buveinių rodikliai 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Diatominių / Dinoflageliatų indeksas“; 4) „Chlorofilas-a“ ir 5) „Cianobakterijų žydėjimo indeksas“. Rodikliai yra taikytini buveinei AD.N5 „Baltijos jūros fotinė oksinė pelaginė zona virš haloklino“, nes kitoms buveinėms vertinimo rodikliai HELCOM (2018a) nėra sukurti. Iš HELCOM pasiūlytų rodiklių Lietuvos jūros rajonui (buveinei AD.N5) taikomi rodikliai: 1) „Zooplanktono vidutinis dydis ir bendras išteklius“, 2) „Sezoninė dominuojančių fitoplanktono grupių kaita“, 3) „Chlorofilas-a“. Zooplanktono vidutinio dydžio ir bendro ištekliaus rodiklis taikomas ir giliau Lietuvos jūriniame rajone esančioms buveinėms (AE.N5 ir AE.O5).
The characterization of status of pelagic habitats at this stage is based on phytoplankton community. The seasonal succession of phytoplankton species as well as dynamic of spring population are used to assess status of pelagic habitats.
The goal of the Strategy is to provide information for the assessments of the status of marine waters with regard to pelagic habitats, in compliance with Commission Directive (EU) 2017/845 of 17 May 2017 and criteria laid down in Commission Decision (EU) 2017/848 of 17 May 2017. The Strategy consists of 2 monitoring programmes: one for the assessment of community structure of phyto- and zooplankton species and second for plankton blooms covering monitoring of chlorophyll a and cyanobacteria accumulations. The information gathered will also be used to assess effectiveness of measures especially, with regard to eutrophication and its effects on pelagic habitats. Regional cooperation is assured by applying HELCOM monitoring guidelines.
The goal of the Strategy is to provide information for the assessments of the status of marine waters with regard to pelagic habitats, in compliance with Commission Directive (EU) 2017/845 of 17 May 2017 and criteria laid down in Commission Decision (EU) 2017/848 of 17 May 2017. The Strategy consists of 2 monitoring programmes: one for the assessment of community structure of phyto- and zooplankton species and second for plankton blooms covering monitoring of chlorophyll a and cyanobacteria accumulations. The information gathered will also be used to assess effectiveness of measures especially, with regard to eutrophication and its effects on pelagic habitats. Regional cooperation is assured by applying HELCOM monitoring guidelines.
The goal of the Strategy is to provide information for the assessments of the status of marine waters with regard to pelagic habitats, in compliance with Commission Directive (EU) 2017/845 of 17 May 2017 and criteria laid down in Commission Decision (EU) 2017/848 of 17 May 2017. The Strategy consists of 2 monitoring programmes: one for the assessment of community structure of phyto- and zooplankton species and second for plankton blooms covering monitoring of chlorophyll a and cyanobacteria accumulations. The information gathered will also be used to assess effectiveness of measures especially, with regard to eutrophication and its effects on pelagic habitats. Regional cooperation is assured by applying HELCOM monitoring guidelines.
The goal of the Strategy is to provide information for the assessments of the status of marine waters with regard to pelagic habitats, in compliance with Commission Directive (EU) 2017/845 of 17 May 2017 and criteria laid down in Commission Decision (EU) 2017/848 of 17 May 2017. The Strategy consists of 2 monitoring programmes: one for the assessment of community structure of phyto- and zooplankton species and second for plankton blooms covering monitoring of chlorophyll a and cyanobacteria accumulations. The information gathered will also be used to assess effectiveness of measures especially, with regard to eutrophication and its effects on pelagic habitats. Regional cooperation is assured by applying HELCOM monitoring guidelines.
"Properties that control the condition of the pelagic habitat are physical, optical and chemical variables, such as temperature, salinity, currents, oxygen supply, nutrient inputs, pH and alkalinity. These factors can be affected by a number of different human activities, both land- and seabased, which give rise to, e.g. pollution, eutrophication and climate change. Physical exploitation also risks changing fundamental conditions in the pelagic environment, see more in the strategy for D7. The plankton community forms the basis of the marine food web and thus interacts with higher trophic guilds, such as fish, birds and marine mammals. Changes at some level in the food chain can thus affect other levels, so how we, for example, manage fish and seal stocks can indirectly affect the state of the plankton community. The plankton community can also be directly affected by organic pollution, hazardous substances and the introduction of invasive alien species. Monitoring the input of nutrients and hazardous substances, as well as introductions of alien species and fishing activities are included in other monitoring strategies. With today's monitoring, it is difficult to identify the direct causes of changes in state of pelagic habitats, which makes it difficult to link environmental effects to specific human activities. Long time series on the dynamics of the plankton community and also better data on human activities and their impact are necessary to find the right explanatory models. The understanding of the functional parts of the plankton community in the food web also needs to be improved in order to be able to link the effects of changes in the plankton communities to other parts of the food webs, see the strategy for D4. The data collection need to be representative, so that it captures spatial and temporal variation, as well as large-scale climate variations in order to distinguish these from the changes that are due to local or regional impact. The current vessel-based monitoring programme has been designed to cover offshore and coastal waters with a few representative biological stations, thus enabling overall monitoring of the areas. The local monitoring programmes and the coordinated recipient control programmes are largely located in coastal areas where human impact may occur. Through analysis of the species composition of the plankton populations, it is also possible to some extent to distinguish whether changes occur due to climate change or other
"Properties that control the condition of the pelagic habitat are physical, optical and chemical variables, such as temperature, salinity, currents, oxygen supply, nutrient inputs, pH and alkalinity. These factors can be affected by a number of different human activities, both land- and seabased, which give rise to, e.g. pollution, eutrophication and climate change. Physical exploitation also risks changing fundamental conditions in the pelagic environment, see more in the strategy for D7. The plankton community forms the basis of the marine food web and thus interacts with higher trophic guilds, such as fish, birds and marine mammals. Changes at some level in the food chain can thus affect other levels, so how we, for example, manage fish and seal stocks can indirectly affect the state of the plankton community. The plankton community can also be directly affected by organic pollution, hazardous substances and the introduction of invasive alien species. Monitoring the input of nutrients and hazardous substances, as well as introductions of alien species and fishing activities are included in other monitoring strategies. With today's monitoring, it is difficult to identify the direct causes of changes in state of pelagic habitats, which makes it difficult to link environmental effects to specific human activities. Long time series on the dynamics of the plankton community and also better data on human activities and their impact are necessary to find the right explanatory models. The understanding of the functional parts of the plankton community in the food web also needs to be improved in order to be able to link the effects of changes in the plankton communities to other parts of the food webs, see the strategy for D4. The data collection need to be representative, so that it captures spatial and temporal variation, as well as large-scale climate variations in order to distinguish these from the changes that are due to local or regional impact. The current vessel-based monitoring programme has been designed to cover offshore and coastal waters with a few representative biological stations, thus enabling overall monitoring of the areas. The local monitoring programmes and the coordinated recipient control programmes are largely located in coastal areas where human impact may occur. Through analysis of the species composition of the plankton populations, it is also possible to some extent to distinguish whether changes occur due to climate change or other
"Properties that control the condition of the pelagic habitat are physical, optical and chemical variables, such as temperature, salinity, currents, oxygen supply, nutrient inputs, pH and alkalinity. These factors can be affected by a number of different human activities, both land- and seabased, which give rise to, e.g. pollution, eutrophication and climate change. Physical exploitation also risks changing fundamental conditions in the pelagic environment, see more in the strategy for D7. The plankton community forms the basis of the marine food web and thus interacts with higher trophic guilds, such as fish, birds and marine mammals. Changes at some level in the food chain can thus affect other levels, so how we, for example, manage fish and seal stocks can indirectly affect the state of the plankton community. The plankton community can also be directly affected by organic pollution, hazardous substances and the introduction of invasive alien species. Monitoring the input of nutrients and hazardous substances, as well as introductions of alien species and fishing activities are included in other monitoring strategies. With today's monitoring, it is difficult to identify the direct causes of changes in state of pelagic habitats, which makes it difficult to link environmental effects to specific human activities. Long time series on the dynamics of the plankton community and also better data on human activities and their impact are necessary to find the right explanatory models. The understanding of the functional parts of the plankton community in the food web also needs to be improved in order to be able to link the effects of changes in the plankton communities to other parts of the food webs, see the strategy for D4. The data collection need to be representative, so that it captures spatial and temporal variation, as well as large-scale climate variations in order to distinguish these from the changes that are due to local or regional impact. The current vessel-based monitoring programme has been designed to cover offshore and coastal waters with a few representative biological stations, thus enabling overall monitoring of the areas. The local monitoring programmes and the coordinated recipient control programmes are largely located in coastal areas where human impact may occur. Through analysis of the species composition of the plankton populations, it is also possible to some extent to distinguish whether changes occur due to climate change or other
"Properties that control the condition of the pelagic habitat are physical, optical and chemical variables, such as temperature, salinity, currents, oxygen supply, nutrient inputs, pH and alkalinity. These factors can be affected by a number of different human activities, both land- and seabased, which give rise to, e.g. pollution, eutrophication and climate change. Physical exploitation also risks changing fundamental conditions in the pelagic environment, see more in the strategy for D7. The plankton community forms the basis of the marine food web and thus interacts with higher trophic guilds, such as fish, birds and marine mammals. Changes at some level in the food chain can thus affect other levels, so how we, for example, manage fish and seal stocks can indirectly affect the state of the plankton community. The plankton community can also be directly affected by organic pollution, hazardous substances and the introduction of invasive alien species. Monitoring the input of nutrients and hazardous substances, as well as introductions of alien species and fishing activities are included in other monitoring strategies. With today's monitoring, it is difficult to identify the direct causes of changes in state of pelagic habitats, which makes it difficult to link environmental effects to specific human activities. Long time series on the dynamics of the plankton community and also better data on human activities and their impact are necessary to find the right explanatory models. The understanding of the functional parts of the plankton community in the food web also needs to be improved in order to be able to link the effects of changes in the plankton communities to other parts of the food webs, see the strategy for D4. The data collection need to be representative, so that it captures spatial and temporal variation, as well as large-scale climate variations in order to distinguish these from the changes that are due to local or regional impact. The current vessel-based monitoring programme has been designed to cover offshore and coastal waters with a few representative biological stations, thus enabling overall monitoring of the areas. The local monitoring programmes and the coordinated recipient control programmes are largely located in coastal areas where human impact may occur. Through analysis of the species composition of the plankton populations, it is also possible to some extent to distinguish whether changes occur due to climate change or other
"Properties that control the condition of the pelagic habitat are physical, optical and chemical variables, such as temperature, salinity, currents, oxygen supply, nutrient inputs, pH and alkalinity. These factors can be affected by a number of different human activities, both land- and seabased, which give rise to, e.g. pollution, eutrophication and climate change. Physical exploitation also risks changing fundamental conditions in the pelagic environment, see more in the strategy for D7. The plankton community forms the basis of the marine food web and thus interacts with higher trophic guilds, such as fish, birds and marine mammals. Changes at some level in the food chain can thus affect other levels, so how we, for example, manage fish and seal stocks can indirectly affect the state of the plankton community. The plankton community can also be directly affected by organic pollution, hazardous substances and the introduction of invasive alien species. Monitoring the input of nutrients and hazardous substances, as well as introductions of alien species and fishing activities are included in other monitoring strategies. With today's monitoring, it is difficult to identify the direct causes of changes in state of pelagic habitats, which makes it difficult to link environmental effects to specific human activities. Long time series on the dynamics of the plankton community and also better data on human activities and their impact are necessary to find the right explanatory models. The understanding of the functional parts of the plankton community in the food web also needs to be improved in order to be able to link the effects of changes in the plankton communities to other parts of the food webs, see the strategy for D4. The data collection need to be representative, so that it captures spatial and temporal variation, as well as large-scale climate variations in order to distinguish these from the changes that are due to local or regional impact. The current vessel-based monitoring programme has been designed to cover offshore and coastal waters with a few representative biological stations, thus enabling overall monitoring of the areas. The local monitoring programmes and the coordinated recipient control programmes are largely located in coastal areas where human impact may occur. Through analysis of the species composition of the plankton populations, it is also possible to some extent to distinguish whether changes occur due to climate change or other
"Properties that control the condition of the pelagic habitat are physical, optical and chemical variables, such as temperature, salinity, currents, oxygen supply, nutrient inputs, pH and alkalinity. These factors can be affected by a number of different human activities, both land- and seabased, which give rise to, e.g. pollution, eutrophication and climate change. Physical exploitation also risks changing fundamental conditions in the pelagic environment, see more in the strategy for D7. The plankton community forms the basis of the marine food web and thus interacts with higher trophic guilds, such as fish, birds and marine mammals. Changes at some level in the food chain can thus affect other levels, so how we, for example, manage fish and seal stocks can indirectly affect the state of the plankton community. The plankton community can also be directly affected by organic pollution, hazardous substances and the introduction of invasive alien species. Monitoring the input of nutrients and hazardous substances, as well as introductions of alien species and fishing activities are included in other monitoring strategies. With today's monitoring, it is difficult to identify the direct causes of changes in state of pelagic habitats, which makes it difficult to link environmental effects to specific human activities. Long time series on the dynamics of the plankton community and also better data on human activities and their impact are necessary to find the right explanatory models. The understanding of the functional parts of the plankton community in the food web also needs to be improved in order to be able to link the effects of changes in the plankton communities to other parts of the food webs, see the strategy for D4. The data collection need to be representative, so that it captures spatial and temporal variation, as well as large-scale climate variations in order to distinguish these from the changes that are due to local or regional impact. The current vessel-based monitoring programme has been designed to cover offshore and coastal waters with a few representative biological stations, thus enabling overall monitoring of the areas. The local monitoring programmes and the coordinated recipient control programmes are largely located in coastal areas where human impact may occur. Through analysis of the species composition of the plankton populations, it is also possible to some extent to distinguish whether changes occur due to climate change or other
"Properties that control the condition of the pelagic habitat are physical, optical and chemical variables, such as temperature, salinity, currents, oxygen supply, nutrient inputs, pH and alkalinity. These factors can be affected by a number of different human activities, both land- and seabased, which give rise to, e.g. pollution, eutrophication and climate change. Physical exploitation also risks changing fundamental conditions in the pelagic environment, see more in the strategy for D7. The plankton community forms the basis of the marine food web and thus interacts with higher trophic guilds, such as fish, birds and marine mammals. Changes at some level in the food chain can thus affect other levels, so how we, for example, manage fish and seal stocks can indirectly affect the state of the plankton community. The plankton community can also be directly affected by organic pollution, hazardous substances and the introduction of invasive alien species. Monitoring the input of nutrients and hazardous substances, as well as introductions of alien species and fishing activities are included in other monitoring strategies. With today's monitoring, it is difficult to identify the direct causes of changes in state of pelagic habitats, which makes it difficult to link environmental effects to specific human activities. Long time series on the dynamics of the plankton community and also better data on human activities and their impact are necessary to find the right explanatory models. The understanding of the functional parts of the plankton community in the food web also needs to be improved in order to be able to link the effects of changes in the plankton communities to other parts of the food webs, see the strategy for D4. The data collection need to be representative, so that it captures spatial and temporal variation, as well as large-scale climate variations in order to distinguish these from the changes that are due to local or regional impact. The current vessel-based monitoring programme has been designed to cover offshore and coastal waters with a few representative biological stations, thus enabling overall monitoring of the areas. The local monitoring programmes and the coordinated recipient control programmes are largely located in coastal areas where human impact may occur. Through analysis of the species composition of the plankton populations, it is also possible to some extent to distinguish whether changes occur due to climate change or other
Coverage of GES criteria
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring will be in place by 2024
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Gaps and plans
Die Monitoringstrategie für den Deskriptor 1 „Pelagische Habitate“ weist gegenwärtig in der Ostsee keine grundsätzlichen Lücken auf. Hinsichtlich des Zooplanktonmonitorings erfordert der HELCOM-Indikator „Zooplankton mittlere Größe und Abundanz“ eine regelmäßige Erfassung mit einer ausreichend hohen, d. h. eine zuverlässige Bewertung ermöglichenden Messfrequenz insbesondere im relevanten Bewertungszeitraum Juni - September. Eine Anpassung des Monitorings wird parallel zur Weiterentwicklung des Indikators geprüft.
Die Monitoringstrategie für den Deskriptor 1 „Pelagische Habitate“ weist gegenwärtig in der Ostsee keine grundsätzlichen Lücken auf. Hinsichtlich des Zooplanktonmonitorings erfordert der HELCOM-Indikator „Zooplankton mittlere Größe und Abundanz“ eine regelmäßige Erfassung mit einer ausreichend hohen, d. h. eine zuverlässige Bewertung ermöglichenden Messfrequenz insbesondere im relevanten Bewertungszeitraum Juni - September. Eine Anpassung des Monitorings wird parallel zur Weiterentwicklung des Indikators geprüft.
Die Monitoringstrategie für den Deskriptor 1 „Pelagische Habitate“ weist gegenwärtig in der Ostsee keine grundsätzlichen Lücken auf. Hinsichtlich des Zooplanktonmonitorings erfordert der HELCOM-Indikator „Zooplankton mittlere Größe und Abundanz“ eine regelmäßige Erfassung mit einer ausreichend hohen, d. h. eine zuverlässige Bewertung ermöglichenden Messfrequenz insbesondere im relevanten Bewertungszeitraum Juni - September. Eine Anpassung des Monitorings wird parallel zur Weiterentwicklung des Indikators geprüft.
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
Monitoring frequency in the coastal water bodies (once per 6-year period, excluding monitoring areas with high monitoring frequency) does not provide sufficient data that could give a good overview of whether and to what extent human activities influence phytoplankton species composition, abundance, and biomass. The effect of anthropogenic pressures (eg nutrient levels) may be overridden by meteorological and hydrophysical conditions during the observations. Microzooplankton is not fully covered by monitoring. Zooplankton sampling methods need to be developed for shallow areas also (currently ZP monitoring methods require water depth at least 7 m). „Seasonal succession of dominating phytoplankton groups“ and „Zooplankton mean size and total stock“ indicators’ thresholds are not developed nor agreed for all sub-basins. For new methods as automated image analysis, HPLC pigment analysis, DNA sequencing, etc that could help to increase the frequency of monitoring, additional studies and pilot monitoring projects are needed as well as parallel measurement sessions during a long-time period. As only two status indicators have been currently used in an assessment, the need for additional indicators is under discussion (e.g. indicator „Zooplankton species diversity“ is being developed in cooperation with HELCOM).
No gaps.
No gaps.
No gaps.
No gaps.
No gaps.
No gaps.
No gaps.
Atviros jūros monitoringas vykdomas per retai, jo įgyvendinimą numatyta svarstyti.
Atviros jūros monitoringas vykdomas per retai, jo įgyvendinimą numatyta svarstyti.
Atviros jūros monitoringas vykdomas per retai, jo įgyvendinimą numatyta svarstyti.
Atviros jūros monitoringas vykdomas per retai, jo įgyvendinimą numatyta svarstyti.
Atviros jūros monitoringas vykdomas per retai, jo įgyvendinimą numatyta svarstyti.
Atviros jūros monitoringas vykdomas per retai, jo įgyvendinimą numatyta svarstyti.
Atviros jūros monitoringas vykdomas per retai, jo įgyvendinimą numatyta svarstyti.
Atviros jūros monitoringas vykdomas per retai, jo įgyvendinimą numatyta svarstyti.
The frequency of monitoring is lower than needed due to limited financial resources. It is planned to acquire needed funding and rise observation frequency.
Not applicable
Not applicable
Not applicable
Not applicable
"In relation to the dynamics of the phytoplankton community the current monitoring of chlorophyll has a low resolution in time and space, which has led to low confidence in state assessments. The development of monitoring with remote sensing will provide better spatial coverage of chlorophyll. Monitoring of optical characteristics are currently being developed to enable calibration and implementation of remote sensing methodology. See programme Remote sensing of the water column. The monitoring of phytoplankton covers all sea basins, but the WFD state classification would benefit from increasing the monitoring of species composition in coastal waters. The zooplankton monitoring is under development by including gelatinous zooplankton and by improving the methodology for more reliable calculations of biomass of zooplankton. Work is also underway to develop new methods for monitoring using automated sampling and measurements, for example from ferry box systems or bottom- or buoy-mounted measurement systems. Methods are already in place and routines are being developed for automated measurements of temperature, salt and oxygen by the use of probes on ships, buoys and measuring systems, or on moving gliders. For monitoring ocean acidification, there are also automated instruments and routines for measuring pCO2 in water, e.g. from a ferry box system. The available methodology for automated measurements of, e.g. pH and inorganic nutrients requires validation for Swedish sea areas. All methods have advantages and disadvantages, but complement each other. To understand the dynamics of the water column, it is important to monitor currents, waves and sea levels. In Sweden, there is a comprehensive network of sea level measurements (started 1774) and in addition, mobile sea level gauges have been tested successfully. There are plans to improve the spatial coverage of current patterns and waves by developing new methods using SAR and HF radars (available through Copernicus marine services). "
"In relation to the dynamics of the phytoplankton community the current monitoring of chlorophyll has a low resolution in time and space, which has led to low confidence in state assessments. The development of monitoring with remote sensing will provide better spatial coverage of chlorophyll. Monitoring of optical characteristics are currently being developed to enable calibration and implementation of remote sensing methodology. See programme Remote sensing of the water column. The monitoring of phytoplankton covers all sea basins, but the WFD state classification would benefit from increasing the monitoring of species composition in coastal waters. The zooplankton monitoring is under development by including gelatinous zooplankton and by improving the methodology for more reliable calculations of biomass of zooplankton. Work is also underway to develop new methods for monitoring using automated sampling and measurements, for example from ferry box systems or bottom- or buoy-mounted measurement systems. Methods are already in place and routines are being developed for automated measurements of temperature, salt and oxygen by the use of probes on ships, buoys and measuring systems, or on moving gliders. For monitoring ocean acidification, there are also automated instruments and routines for measuring pCO2 in water, e.g. from a ferry box system. The available methodology for automated measurements of, e.g. pH and inorganic nutrients requires validation for Swedish sea areas. All methods have advantages and disadvantages, but complement each other. To understand the dynamics of the water column, it is important to monitor currents, waves and sea levels. In Sweden, there is a comprehensive network of sea level measurements (started 1774) and in addition, mobile sea level gauges have been tested successfully. There are plans to improve the spatial coverage of current patterns and waves by developing new methods using SAR and HF radars (available through Copernicus marine services). "
"In relation to the dynamics of the phytoplankton community the current monitoring of chlorophyll has a low resolution in time and space, which has led to low confidence in state assessments. The development of monitoring with remote sensing will provide better spatial coverage of chlorophyll. Monitoring of optical characteristics are currently being developed to enable calibration and implementation of remote sensing methodology. See programme Remote sensing of the water column. The monitoring of phytoplankton covers all sea basins, but the WFD state classification would benefit from increasing the monitoring of species composition in coastal waters. The zooplankton monitoring is under development by including gelatinous zooplankton and by improving the methodology for more reliable calculations of biomass of zooplankton. Work is also underway to develop new methods for monitoring using automated sampling and measurements, for example from ferry box systems or bottom- or buoy-mounted measurement systems. Methods are already in place and routines are being developed for automated measurements of temperature, salt and oxygen by the use of probes on ships, buoys and measuring systems, or on moving gliders. For monitoring ocean acidification, there are also automated instruments and routines for measuring pCO2 in water, e.g. from a ferry box system. The available methodology for automated measurements of, e.g. pH and inorganic nutrients requires validation for Swedish sea areas. All methods have advantages and disadvantages, but complement each other. To understand the dynamics of the water column, it is important to monitor currents, waves and sea levels. In Sweden, there is a comprehensive network of sea level measurements (started 1774) and in addition, mobile sea level gauges have been tested successfully. There are plans to improve the spatial coverage of current patterns and waves by developing new methods using SAR and HF radars (available through Copernicus marine services). "
"In relation to the dynamics of the phytoplankton community the current monitoring of chlorophyll has a low resolution in time and space, which has led to low confidence in state assessments. The development of monitoring with remote sensing will provide better spatial coverage of chlorophyll. Monitoring of optical characteristics are currently being developed to enable calibration and implementation of remote sensing methodology. See programme Remote sensing of the water column. The monitoring of phytoplankton covers all sea basins, but the WFD state classification would benefit from increasing the monitoring of species composition in coastal waters. The zooplankton monitoring is under development by including gelatinous zooplankton and by improving the methodology for more reliable calculations of biomass of zooplankton. Work is also underway to develop new methods for monitoring using automated sampling and measurements, for example from ferry box systems or bottom- or buoy-mounted measurement systems. Methods are already in place and routines are being developed for automated measurements of temperature, salt and oxygen by the use of probes on ships, buoys and measuring systems, or on moving gliders. For monitoring ocean acidification, there are also automated instruments and routines for measuring pCO2 in water, e.g. from a ferry box system. The available methodology for automated measurements of, e.g. pH and inorganic nutrients requires validation for Swedish sea areas. All methods have advantages and disadvantages, but complement each other. To understand the dynamics of the water column, it is important to monitor currents, waves and sea levels. In Sweden, there is a comprehensive network of sea level measurements (started 1774) and in addition, mobile sea level gauges have been tested successfully. There are plans to improve the spatial coverage of current patterns and waves by developing new methods using SAR and HF radars (available through Copernicus marine services). "
"In relation to the dynamics of the phytoplankton community the current monitoring of chlorophyll has a low resolution in time and space, which has led to low confidence in state assessments. The development of monitoring with remote sensing will provide better spatial coverage of chlorophyll. Monitoring of optical characteristics are currently being developed to enable calibration and implementation of remote sensing methodology. See programme Remote sensing of the water column. The monitoring of phytoplankton covers all sea basins, but the WFD state classification would benefit from increasing the monitoring of species composition in coastal waters. The zooplankton monitoring is under development by including gelatinous zooplankton and by improving the methodology for more reliable calculations of biomass of zooplankton. Work is also underway to develop new methods for monitoring using automated sampling and measurements, for example from ferry box systems or bottom- or buoy-mounted measurement systems. Methods are already in place and routines are being developed for automated measurements of temperature, salt and oxygen by the use of probes on ships, buoys and measuring systems, or on moving gliders. For monitoring ocean acidification, there are also automated instruments and routines for measuring pCO2 in water, e.g. from a ferry box system. The available methodology for automated measurements of, e.g. pH and inorganic nutrients requires validation for Swedish sea areas. All methods have advantages and disadvantages, but complement each other. To understand the dynamics of the water column, it is important to monitor currents, waves and sea levels. In Sweden, there is a comprehensive network of sea level measurements (started 1774) and in addition, mobile sea level gauges have been tested successfully. There are plans to improve the spatial coverage of current patterns and waves by developing new methods using SAR and HF radars (available through Copernicus marine services). "
"In relation to the dynamics of the phytoplankton community the current monitoring of chlorophyll has a low resolution in time and space, which has led to low confidence in state assessments. The development of monitoring with remote sensing will provide better spatial coverage of chlorophyll. Monitoring of optical characteristics are currently being developed to enable calibration and implementation of remote sensing methodology. See programme Remote sensing of the water column. The monitoring of phytoplankton covers all sea basins, but the WFD state classification would benefit from increasing the monitoring of species composition in coastal waters. The zooplankton monitoring is under development by including gelatinous zooplankton and by improving the methodology for more reliable calculations of biomass of zooplankton. Work is also underway to develop new methods for monitoring using automated sampling and measurements, for example from ferry box systems or bottom- or buoy-mounted measurement systems. Methods are already in place and routines are being developed for automated measurements of temperature, salt and oxygen by the use of probes on ships, buoys and measuring systems, or on moving gliders. For monitoring ocean acidification, there are also automated instruments and routines for measuring pCO2 in water, e.g. from a ferry box system. The available methodology for automated measurements of, e.g. pH and inorganic nutrients requires validation for Swedish sea areas. All methods have advantages and disadvantages, but complement each other. To understand the dynamics of the water column, it is important to monitor currents, waves and sea levels. In Sweden, there is a comprehensive network of sea level measurements (started 1774) and in addition, mobile sea level gauges have been tested successfully. There are plans to improve the spatial coverage of current patterns and waves by developing new methods using SAR and HF radars (available through Copernicus marine services). "
"In relation to the dynamics of the phytoplankton community the current monitoring of chlorophyll has a low resolution in time and space, which has led to low confidence in state assessments. The development of monitoring with remote sensing will provide better spatial coverage of chlorophyll. Monitoring of optical characteristics are currently being developed to enable calibration and implementation of remote sensing methodology. See programme Remote sensing of the water column. The monitoring of phytoplankton covers all sea basins, but the WFD state classification would benefit from increasing the monitoring of species composition in coastal waters. The zooplankton monitoring is under development by including gelatinous zooplankton and by improving the methodology for more reliable calculations of biomass of zooplankton. Work is also underway to develop new methods for monitoring using automated sampling and measurements, for example from ferry box systems or bottom- or buoy-mounted measurement systems. Methods are already in place and routines are being developed for automated measurements of temperature, salt and oxygen by the use of probes on ships, buoys and measuring systems, or on moving gliders. For monitoring ocean acidification, there are also automated instruments and routines for measuring pCO2 in water, e.g. from a ferry box system. The available methodology for automated measurements of, e.g. pH and inorganic nutrients requires validation for Swedish sea areas. All methods have advantages and disadvantages, but complement each other. To understand the dynamics of the water column, it is important to monitor currents, waves and sea levels. In Sweden, there is a comprehensive network of sea level measurements (started 1774) and in addition, mobile sea level gauges have been tested successfully. There are plans to improve the spatial coverage of current patterns and waves by developing new methods using SAR and HF radars (available through Copernicus marine services). "
Related targets
  • UZO2
  • UZO2.1
  • UZO2.2
  • UZO2.3
  • UZO2.4
  • UZO2.5
  • UZO3
  • UZO3.1
  • UZO3.2
  • UZO3.3
  • UZO3.4
  • UZO3.5
  • UZO4
  • UZO4.1
  • UZO4.2
  • UZO4.3
  • UZO4.4
  • UZO4.5
  • UZO4.6
  • UZO5
  • UZO5.1
  • UZO5.2
  • UZO5.3
  • UZO6
  • UZO6.1
  • UZO6.2
  • UZO6.3
  • UZO6.4
  • UZO6.5
  • UZO2
  • UZO2.1
  • UZO2.2
  • UZO2.3
  • UZO2.4
  • UZO2.5
  • UZO3
  • UZO3.1
  • UZO3.2
  • UZO3.3
  • UZO3.4
  • UZO3.5
  • UZO4
  • UZO4.1
  • UZO4.2
  • UZO4.3
  • UZO4.4
  • UZO4.5
  • UZO4.6
  • UZO5
  • UZO5.1
  • UZO5.2
  • UZO5.3
  • UZO6
  • UZO6.1
  • UZO6.2
  • UZO6.3
  • UZO6.4
  • UZO6.5
  • UZO2
  • UZO2.1
  • UZO2.2
  • UZO2.3
  • UZO2.4
  • UZO2.5
  • UZO3
  • UZO3.1
  • UZO3.2
  • UZO3.3
  • UZO3.4
  • UZO3.5
  • UZO4
  • UZO4.1
  • UZO4.2
  • UZO4.3
  • UZO4.4
  • UZO4.5
  • UZO4.6
  • UZO5
  • UZO5.1
  • UZO5.2
  • UZO5.3
  • UZO6
  • UZO6.1
  • UZO6.2
  • UZO6.3
  • UZO6.4
  • UZO6.5
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • BALEE-T33
  • BALEE-T34
  • Target 16
  • Target 8
  • LUONTO1
  • LUONTO2
  • LUONTO1
  • LUONTO2
  • LUONTO1
  • LUONTO2
  • LUONTO1
  • LUONTO2
  • LUONTO1
  • LUONTO2
  • LUONTO1
  • LUONTO2
  • LUONTO1
  • LUONTO2
  • 1
  • 3
  • 1
  • 3
  • 1
  • 3
  • 1
  • 3
  • 1
  • 3
  • 1
  • 3
  • 1
  • 3
  • 1
  • 3
  • JVM1
  • PL_Target_D1C6
  • PL_Target_D1C6_CyaBl
  • PL_Target_D1C6_zooplankton
  • PL_Target_D4C2_Dia/Dino
  • PL_Target_D1C6
  • PL_Target_D1C6_CyaBl
  • PL_Target_D1C6_zooplankton
  • PL_Target_D4C2_Dia/Dino
  • PL_Target_D1C6
  • PL_Target_D1C6_CyaBl
  • PL_Target_D1C6_zooplankton
  • PL_Target_D4C2_Dia/Dino
  • PL_Target_D1C6
  • PL_Target_D1C6_CyaBl
  • PL_Target_D1C6_zooplankton
  • PL_Target_D4C2_Dia/Dino
  • ANSSE-A.1_Tillförsel_näringsämnen
  • ANSSE-B.1_Tillförsel_farliga_ämnen_halt
  • BALSE-A.1_Tillförsel_näringsämnen
  • BALSE-B.1_Tillförsel_farliga_ämnen_halt
  • ANSSE-A.1_Tillförsel_näringsämnen
  • ANSSE-B.1_Tillförsel_farliga_ämnen_halt
  • BALSE-A.1_Tillförsel_näringsämnen
  • BALSE-B.1_Tillförsel_farliga_ämnen_halt
  • ANSSE-A.1_Tillförsel_näringsämnen
  • ANSSE-B.1_Tillförsel_farliga_ämnen_halt
  • BALSE-A.1_Tillförsel_näringsämnen
  • BALSE-B.1_Tillförsel_farliga_ämnen_halt
  • ANSSE-A.1_Tillförsel_näringsämnen
  • ANSSE-B.1_Tillförsel_farliga_ämnen_halt
  • BALSE-A.1_Tillförsel_näringsämnen
  • BALSE-B.1_Tillförsel_farliga_ämnen_halt
  • ANSSE-A.1_Tillförsel_näringsämnen
  • ANSSE-B.1_Tillförsel_farliga_ämnen_halt
  • BALSE-A.1_Tillförsel_näringsämnen
  • BALSE-B.1_Tillförsel_farliga_ämnen_halt
  • ANSSE-A.1_Tillförsel_näringsämnen
  • ANSSE-B.1_Tillförsel_farliga_ämnen_halt
  • BALSE-A.1_Tillförsel_näringsämnen
  • BALSE-B.1_Tillförsel_farliga_ämnen_halt
  • ANSSE-A.1_Tillförsel_näringsämnen
  • ANSSE-B.1_Tillförsel_farliga_ämnen_halt
  • BALSE-A.1_Tillförsel_näringsämnen
  • BALSE-B.1_Tillförsel_farliga_ämnen_halt
Coverage of targets
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring will be in place by 2024
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Related measures
  • BALDE-M004-WFD - 'Bau und Erweiterung Abwasserbehandlungsanlagen / Weitergehende Abwasserbehandlung : Ausbau kommunaler Kläranlagen zur Reduzierung sonstiger Stoffeinträge'
  • BALDE-M008-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Anschluss bisher nicht angeschlossener Gebiete an bestehende Kläranlagen'
  • BALDE-M009-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Sonstige Maßnahmen zur Reduzierung der Stoffeinträge durch kommunale Abwassereinleitungen'
  • BALDE-M010-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Neubau und Anpassung von Anlagen zur Ableitung, Behandlung und zum Rückhalt von Misch- und Niederschlagswasser'
  • BALDE-M011-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Optimierung der Betriebsweise von Anlagen zur Ableitung, Behandlung und zum Rückhalt von Misch- und Niederschlagswasser'
  • BALDE-M012-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Sonstige Maßnahmen zur Reduzierung der Stoffeinträge durch Misch- und Niederschlagswassereinleitungen'
  • BALDE-M016-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Bergbau : Maßnahmen zur Reduzierung punktueller Stoffeinträge aus dem Bergbau'
  • BALDE-M017-WFD - 'Wärmelastpläne : Maßnahmen zur Reduzierung der Belastungen durch Wärmeeinleitungen'
  • BALDE-M018-WFD - 'Maßnahmen zur Einstellung von Emissionen, Einleitungen und Verlusten prioritärer gefährlicher Stoffe oder der Reduzierung von Emissionen, Einleitungen und Verlusten prioritärer Stoffe : Maßnahmen zur Reduzierung der Stoffeinträge aus anderen Punktquellen'
  • BALDE-M024-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Bergbau : Maßnahmen zur Reduzierung diffuser Belastungen infolge Bergbau'
  • BALDE-M026-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Maßnahmen zur Reduzierung diffuser Stoffeinträge von befestigten Flächen'
  • BALDE-M032-WFD - 'Reduzierung der Pestizidbelastung aus der Landwirtschaft : Maßnahmen zur Reduzierung der Einträge von Pflanzenschutzmitteln aus der Landwirtschaft'
  • BALDE-M035-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Maßnahmen zur Vermeidung von unfallbedingten Einträgen'
  • BALDE-M036-WFD - 'Maßnahmen zur Einstellung von Emissionen, Einleitungen und Verlusten prioritärer gefährlicher Stoffe oder der Reduzierung von Emissionen, Einleitungen und Verlusten prioritärer Stoffe : Maßnahmen zur Reduzierung der Belastungen aus anderen diffusen Quellen'
  • BALDE-M064-WFD - 'Maßnahmen zur Reduzierung von nutzungsbedingten Abflussspitzen'
  • BALDE-M068-WFD - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische : Maßnahmen zur Herstellung der linearen Durchgängigkeit an Talsperren, Rückhaltebecken, Speichern und Fischteichen im Hauptschluss'
  • BALDE-M069-WFD - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische : Maßnahmen zur Herstellung/Verbesserung der linearen Durchgängigkeit an Staustufen/Flusssperren, Abstürzen, Durchlässen und sonstigen wasserbaulichen Anlagen gemäß DIN 4048 bzw. 19700 Teil 13'
  • BALDE-M070-WFD - 'Maßnahmen zur Habitatverbesserung durch Initiieren / Zulassen einer eigendynamischen Gewässerentwicklung'
  • BALDE-M071-WFD - 'Maßnahmen zur Habitatverbesserung im vorhandenen Profil'
  • BALDE-M072-WFD - 'Maßnahmen zur Habitatverbesserung im Gewässer durch Laufveränderung, Ufer- oder Sohlgestaltung'
  • BALDE-M073-WFD - 'Maßnahmen zur Habitatverbesserung im Uferbereich'
  • BALDE-M074-WFD - 'Maßnahmen zur Auenentwicklung und zur Verbesserung von Habitaten'
  • BALDE-M075-WFD - 'Anschluss von Seitengewässern, Altarmen (Quervernetzung)'
  • BALDE-M076-WFD - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische : Technische und betriebliche Maßnahmen vorrangig zum Fischschutz an wasserbaulichen Anlagen'
  • BALDE-M077-WFD - 'Maßnahmen zur Verbesserung des Geschiebehaushaltes bzw. Sedimentmanagement'
  • BALDE-M094-WFD - 'Maßnahmen zur Eindämmung eingeschleppter Spezies'
  • BALDE-M101-WFD - 'Maßnahmen zur Verringerung ungesteuerter diffuser stofflicher Belastungen, z.B. durch Entnahme von Sedimenten, mit ggf. anschließender Behandlung, Verwertung und Entsorgung : Maßnahmen zur Reduzierung stofflicher Belastungen aus Sedimenten'
  • BALDE-M405-UZ2-01 - 'Kriterien und Anreizsysteme für umweltfreundliche Schiffe'
  • BALDE-M406-UZ2-02 - 'Vorgaben zur Einleitung und Entsorgung von Waschwässern aus Abgasreinigungsanlagen von Schiffen'
  • BALDE-M407-UZ2-03 - 'Verhütung und Bekämpfung von Meeresverschmutzungen – Verbesserung der maritimen Notfallvorsorge und des Notfallmanagements'
  • BALDE-M408-UZ2-04 - 'Umgang mit Munitionsaltlasten im Meer'
  • BALDE-M409-UZ3-01 - 'Aufnahme von für das Ökosystem wertbestimmenden Arten und Biotoptypen in Schutzgebietsverordnungen'
  • BALDE-M410-UZ3-02 - 'Maßnahmen zum Schutz von wandernden Arten im marinen Bereich'
  • BALDE-M411-UZ4-01 - 'Weitere Verankerung des Themas „nachhaltige ökosystemgerechte Fischerei“ im öffentlichen Bewusstsein'
  • BALDE-M412-UZ4-02 - 'Fischereimaßnahmen'
  • BALDE-M415-UZ4-05 - 'Umweltgerechtes Management von marinen Sand- und Kiesressourcen für den Küstenschutz in Mecklenburg-Vorpommern (Ostsee)'
  • BALDE-M416-UZ5-01 - 'Verankerung des Themas Meeresmüll in Lehrzielen, Lehrplänen und -material'
  • BALDE-M417-UZ5-02 - 'Modifikation / Substitution von Produkten unter Berücksichtigung einer ökobilanzierten Gesamtbetrachtung'
  • BALDE-M418-UZ5-03 - 'Vermeidung des Einsatzes von primären Mikroplastikpartikeln'
  • BALDE-M419-UZ5-04 - 'Reduktion der Einträge von Kunststoffmüll, z.B. Plastikverpackungen, in die Meeresumwelt'
  • BALDE-M420-UZ5-05 - 'Müllbezogene Maßnahmen zu Fischereinetzen und -geräten'
  • BALDE-M421-UZ5-06 - 'Etablierung des "Fishing-for-Litter"-Konzepts'
  • BALDE-M422-UZ5-07 - 'Reduzierung bereits vorhandenen Mülls im Meer'
  • BALDE-M423-UZ5-08 - 'Reduzierung des Plastikaufkommens durch kommunale Vorgaben'
  • BALDE-M424-UZ5-09 - 'Reduzierung der Emission und des Eintrags von Mikroplastikpartikeln'
  • BALDE-M425-UZ6-01 - 'Ableitung und Anwendung von biologischen Grenzwerten für die Wirkung von Unterwasserlärm auf relevante Arten'
  • BALDE-M426-UZ6-02 - 'Aufbau eines Registers für relevante Schallquellen und Schockwellen und Etablierung standardisierter verbindlicher Berichtspflichten'
  • BALDE-M427-UZ6-03 - 'Lärmkartierung der deutschen Meeresgebiete'
  • BALDE-M428-UZ6-04 - 'Entwicklung und Anwendung von Lärmminderungsmaßnahmen für die Nord- und Ostsee'
  • BALDE-M429-UZ6-05 - 'Ableitung und Anwendung von Schwellenwerten für Wärmeeinträge'
  • BALDE-M430-UZ6-06 - 'Entwicklung und Anwendung umweltverträglicher Beleuchtung von Offshore-Installationen und begleitende Maßnahmen'
  • BALDE-M501-WFD - 'Erstellung von Konzeptionen / Studien / Gutachten'
  • BALDE-M502-WFD - 'Durchführung von Forschungs-, Entwicklungs- und Demonstrationsvorhaben : Durchführung von Forschungs-, Entwicklungs- und Demonstrationsvorhaben'
  • BALDE-M503-WFD - 'Informations- und Fortbildungsmaßnahmen'
  • BALDE-M505-WFD - 'Einrichtung bzw. Anpassung von Förderprogrammen'
  • BALDE-M508-WFD - 'Vertiefende Untersuchungen und Kontrollen'
  • BALDE-M903-other - 'Laufender Prozess der Stoffpriorisierung durch die EU-Kommission'
  • BALDE-M904-other - 'Verbot von TBT und anderen meeresumweltgefährdenden Stoffen'
  • BALDE-M905-other - 'Einstellen des Quecksilber-verfahrens in der Chlor-Alkali Industrie (bis 2010) und Redukti-on von Quecksilber-Einleitungen und -Emissionen aus Chlor-Alkali-Produktion'
  • BALDE-M906-other - 'Maßnahmen im Zuge der Umsetzung der Industrieemissionsrichtlinie'
  • BALDE-M907-other - 'Umsetzung der Genfer Luftreinhaltekonvention (Göteborg- und Aarhus-Protokolle)'
  • BALDE-M908-other - 'Umsetzung des MARPOL-Übereinkommens (Anlagen I, II, III, V und VI)'
  • BALDE-M909-other - 'PSSA Ostsee'
  • BALDE-M910-other - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische'
  • BALDE-M911-other - 'Ballastwasserbehandlungssysteme und -management'
  • BALDE-M912-other - 'Implementierung der Verordnung (EU) Nr. 708/2007 über die Verwendung nicht heimischer und gebietsfremder Arten in der Aquakultur'
  • BALDE-M913-other - 'Implementierung der Verordnung (EU) Nr. 1143/2014 über die Prävention und das Management der Einbringung und Ausbreitung invasiver gebietsfremder Arten'
  • BALDE-M914-other - 'Meeresschutzgebiete in der AWZ der deutschen Nord- und Ostsee'
  • BALDE-M915-other - 'Meeresschutzgebiete im Küstengewässer der deutschen Nord- und Ostsee'
  • BALDE-M916-other - 'Arten- und Biotopschutz'
  • BALDE-M917-other - 'Fischereiliche Regelungen in Schutzgebietsverordnungen und Landesfischereigesetzen'
  • BALDE-M918-other - 'Freiwillige Vereinbarungen zum Schutz von Arten und Lebensräumen'
  • BALDE-M919-other - 'Fischereimanagementmaßnahmen in Natura-2000-Gebieten in der AWZ'
  • BALDE-M920-other - 'Nationaler Aktionsplan Stör / Wiederansieldung des Störs (Acipenser sturio)'
  • BALDE-M922-other - 'Positionspapier des Geschäftsbereichs des Bundesumweltministeriums zur kumulativen Bewertung des Seetaucherhabitatverlusts durch Offshore-Windparks in der deutschen AWZ der Nord- und Ostsee als Grundlage für eine Übereinkunft des BfN mit dem BSH; Einführung eines neuen fachlich begründeten Bewertungsverfahrens.'
  • BALDE-M923-other - 'Genehmigungsverfahren für Vorhaben'
  • BALDE-M924-other - 'Maritime Raumordnungspläne des Bundes (AWZ) und der Länder (Küstengewässer)'
  • BALDE-M926-other - 'Umsetzung der  neuen Gemeinsame Fischereipolitik (GFP)'
  • BALDE-M927-other - 'Umsetzung der Regelungen in den Landesfischereigesetzen'
  • BALDE-M928-other - 'Regelungen nach BNatSchG und LNatSchG, insb. FFH-Verträglichkeitsprüfung, Arten- und Biotopschutz sowie Regelungen zur Vermeidung und Kompensation von Eingriffen'
  • BALDE-M929-other - 'Integriertes Küstenzonenmanagement'
  • BALDE-M930-other - 'Abfallwirtschaft (Pfandsysteme und Verwertungsquoten für Verpackungen, Deponieverbot für Kunststoffe, Abfallvermeidung)'
  • BALDE-M931-other - 'Verbot der Einbringung von Abfällen in die Hohe See'
  • BALDE-M932-other - 'Vorgaben für Hafenauffangeinrichtungen, Mülltagebücher und Müllbehandlungspläne'
  • BALDE-M933-other - 'Schiffsabfallregelungen: Hafenstaatkontrolle, Sondergebiete nach MARPOL Anlage V'
  • BALDE-M004-WFD - 'Bau und Erweiterung Abwasserbehandlungsanlagen / Weitergehende Abwasserbehandlung : Ausbau kommunaler Kläranlagen zur Reduzierung sonstiger Stoffeinträge'
  • BALDE-M008-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Anschluss bisher nicht angeschlossener Gebiete an bestehende Kläranlagen'
  • BALDE-M009-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Sonstige Maßnahmen zur Reduzierung der Stoffeinträge durch kommunale Abwassereinleitungen'
  • BALDE-M010-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Neubau und Anpassung von Anlagen zur Ableitung, Behandlung und zum Rückhalt von Misch- und Niederschlagswasser'
  • BALDE-M011-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Optimierung der Betriebsweise von Anlagen zur Ableitung, Behandlung und zum Rückhalt von Misch- und Niederschlagswasser'
  • BALDE-M012-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Sonstige Maßnahmen zur Reduzierung der Stoffeinträge durch Misch- und Niederschlagswassereinleitungen'
  • BALDE-M016-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Bergbau : Maßnahmen zur Reduzierung punktueller Stoffeinträge aus dem Bergbau'
  • BALDE-M017-WFD - 'Wärmelastpläne : Maßnahmen zur Reduzierung der Belastungen durch Wärmeeinleitungen'
  • BALDE-M018-WFD - 'Maßnahmen zur Einstellung von Emissionen, Einleitungen und Verlusten prioritärer gefährlicher Stoffe oder der Reduzierung von Emissionen, Einleitungen und Verlusten prioritärer Stoffe : Maßnahmen zur Reduzierung der Stoffeinträge aus anderen Punktquellen'
  • BALDE-M024-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Bergbau : Maßnahmen zur Reduzierung diffuser Belastungen infolge Bergbau'
  • BALDE-M026-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Maßnahmen zur Reduzierung diffuser Stoffeinträge von befestigten Flächen'
  • BALDE-M032-WFD - 'Reduzierung der Pestizidbelastung aus der Landwirtschaft : Maßnahmen zur Reduzierung der Einträge von Pflanzenschutzmitteln aus der Landwirtschaft'
  • BALDE-M035-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Maßnahmen zur Vermeidung von unfallbedingten Einträgen'
  • BALDE-M036-WFD - 'Maßnahmen zur Einstellung von Emissionen, Einleitungen und Verlusten prioritärer gefährlicher Stoffe oder der Reduzierung von Emissionen, Einleitungen und Verlusten prioritärer Stoffe : Maßnahmen zur Reduzierung der Belastungen aus anderen diffusen Quellen'
  • BALDE-M064-WFD - 'Maßnahmen zur Reduzierung von nutzungsbedingten Abflussspitzen'
  • BALDE-M068-WFD - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische : Maßnahmen zur Herstellung der linearen Durchgängigkeit an Talsperren, Rückhaltebecken, Speichern und Fischteichen im Hauptschluss'
  • BALDE-M069-WFD - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische : Maßnahmen zur Herstellung/Verbesserung der linearen Durchgängigkeit an Staustufen/Flusssperren, Abstürzen, Durchlässen und sonstigen wasserbaulichen Anlagen gemäß DIN 4048 bzw. 19700 Teil 13'
  • BALDE-M070-WFD - 'Maßnahmen zur Habitatverbesserung durch Initiieren / Zulassen einer eigendynamischen Gewässerentwicklung'
  • BALDE-M071-WFD - 'Maßnahmen zur Habitatverbesserung im vorhandenen Profil'
  • BALDE-M072-WFD - 'Maßnahmen zur Habitatverbesserung im Gewässer durch Laufveränderung, Ufer- oder Sohlgestaltung'
  • BALDE-M073-WFD - 'Maßnahmen zur Habitatverbesserung im Uferbereich'
  • BALDE-M074-WFD - 'Maßnahmen zur Auenentwicklung und zur Verbesserung von Habitaten'
  • BALDE-M075-WFD - 'Anschluss von Seitengewässern, Altarmen (Quervernetzung)'
  • BALDE-M076-WFD - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische : Technische und betriebliche Maßnahmen vorrangig zum Fischschutz an wasserbaulichen Anlagen'
  • BALDE-M077-WFD - 'Maßnahmen zur Verbesserung des Geschiebehaushaltes bzw. Sedimentmanagement'
  • BALDE-M094-WFD - 'Maßnahmen zur Eindämmung eingeschleppter Spezies'
  • BALDE-M101-WFD - 'Maßnahmen zur Verringerung ungesteuerter diffuser stofflicher Belastungen, z.B. durch Entnahme von Sedimenten, mit ggf. anschließender Behandlung, Verwertung und Entsorgung : Maßnahmen zur Reduzierung stofflicher Belastungen aus Sedimenten'
  • BALDE-M405-UZ2-01 - 'Kriterien und Anreizsysteme für umweltfreundliche Schiffe'
  • BALDE-M406-UZ2-02 - 'Vorgaben zur Einleitung und Entsorgung von Waschwässern aus Abgasreinigungsanlagen von Schiffen'
  • BALDE-M407-UZ2-03 - 'Verhütung und Bekämpfung von Meeresverschmutzungen – Verbesserung der maritimen Notfallvorsorge und des Notfallmanagements'
  • BALDE-M408-UZ2-04 - 'Umgang mit Munitionsaltlasten im Meer'
  • BALDE-M409-UZ3-01 - 'Aufnahme von für das Ökosystem wertbestimmenden Arten und Biotoptypen in Schutzgebietsverordnungen'
  • BALDE-M410-UZ3-02 - 'Maßnahmen zum Schutz von wandernden Arten im marinen Bereich'
  • BALDE-M411-UZ4-01 - 'Weitere Verankerung des Themas „nachhaltige ökosystemgerechte Fischerei“ im öffentlichen Bewusstsein'
  • BALDE-M412-UZ4-02 - 'Fischereimaßnahmen'
  • BALDE-M415-UZ4-05 - 'Umweltgerechtes Management von marinen Sand- und Kiesressourcen für den Küstenschutz in Mecklenburg-Vorpommern (Ostsee)'
  • BALDE-M416-UZ5-01 - 'Verankerung des Themas Meeresmüll in Lehrzielen, Lehrplänen und -material'
  • BALDE-M417-UZ5-02 - 'Modifikation / Substitution von Produkten unter Berücksichtigung einer ökobilanzierten Gesamtbetrachtung'
  • BALDE-M418-UZ5-03 - 'Vermeidung des Einsatzes von primären Mikroplastikpartikeln'
  • BALDE-M419-UZ5-04 - 'Reduktion der Einträge von Kunststoffmüll, z.B. Plastikverpackungen, in die Meeresumwelt'
  • BALDE-M420-UZ5-05 - 'Müllbezogene Maßnahmen zu Fischereinetzen und -geräten'
  • BALDE-M421-UZ5-06 - 'Etablierung des "Fishing-for-Litter"-Konzepts'
  • BALDE-M422-UZ5-07 - 'Reduzierung bereits vorhandenen Mülls im Meer'
  • BALDE-M423-UZ5-08 - 'Reduzierung des Plastikaufkommens durch kommunale Vorgaben'
  • BALDE-M424-UZ5-09 - 'Reduzierung der Emission und des Eintrags von Mikroplastikpartikeln'
  • BALDE-M425-UZ6-01 - 'Ableitung und Anwendung von biologischen Grenzwerten für die Wirkung von Unterwasserlärm auf relevante Arten'
  • BALDE-M426-UZ6-02 - 'Aufbau eines Registers für relevante Schallquellen und Schockwellen und Etablierung standardisierter verbindlicher Berichtspflichten'
  • BALDE-M427-UZ6-03 - 'Lärmkartierung der deutschen Meeresgebiete'
  • BALDE-M428-UZ6-04 - 'Entwicklung und Anwendung von Lärmminderungsmaßnahmen für die Nord- und Ostsee'
  • BALDE-M429-UZ6-05 - 'Ableitung und Anwendung von Schwellenwerten für Wärmeeinträge'
  • BALDE-M430-UZ6-06 - 'Entwicklung und Anwendung umweltverträglicher Beleuchtung von Offshore-Installationen und begleitende Maßnahmen'
  • BALDE-M501-WFD - 'Erstellung von Konzeptionen / Studien / Gutachten'
  • BALDE-M502-WFD - 'Durchführung von Forschungs-, Entwicklungs- und Demonstrationsvorhaben : Durchführung von Forschungs-, Entwicklungs- und Demonstrationsvorhaben'
  • BALDE-M503-WFD - 'Informations- und Fortbildungsmaßnahmen'
  • BALDE-M505-WFD - 'Einrichtung bzw. Anpassung von Förderprogrammen'
  • BALDE-M508-WFD - 'Vertiefende Untersuchungen und Kontrollen'
  • BALDE-M903-other - 'Laufender Prozess der Stoffpriorisierung durch die EU-Kommission'
  • BALDE-M904-other - 'Verbot von TBT und anderen meeresumweltgefährdenden Stoffen'
  • BALDE-M905-other - 'Einstellen des Quecksilber-verfahrens in der Chlor-Alkali Industrie (bis 2010) und Redukti-on von Quecksilber-Einleitungen und -Emissionen aus Chlor-Alkali-Produktion'
  • BALDE-M906-other - 'Maßnahmen im Zuge der Umsetzung der Industrieemissionsrichtlinie'
  • BALDE-M907-other - 'Umsetzung der Genfer Luftreinhaltekonvention (Göteborg- und Aarhus-Protokolle)'
  • BALDE-M908-other - 'Umsetzung des MARPOL-Übereinkommens (Anlagen I, II, III, V und VI)'
  • BALDE-M909-other - 'PSSA Ostsee'
  • BALDE-M910-other - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische'
  • BALDE-M911-other - 'Ballastwasserbehandlungssysteme und -management'
  • BALDE-M912-other - 'Implementierung der Verordnung (EU) Nr. 708/2007 über die Verwendung nicht heimischer und gebietsfremder Arten in der Aquakultur'
  • BALDE-M913-other - 'Implementierung der Verordnung (EU) Nr. 1143/2014 über die Prävention und das Management der Einbringung und Ausbreitung invasiver gebietsfremder Arten'
  • BALDE-M914-other - 'Meeresschutzgebiete in der AWZ der deutschen Nord- und Ostsee'
  • BALDE-M915-other - 'Meeresschutzgebiete im Küstengewässer der deutschen Nord- und Ostsee'
  • BALDE-M916-other - 'Arten- und Biotopschutz'
  • BALDE-M917-other - 'Fischereiliche Regelungen in Schutzgebietsverordnungen und Landesfischereigesetzen'
  • BALDE-M918-other - 'Freiwillige Vereinbarungen zum Schutz von Arten und Lebensräumen'
  • BALDE-M919-other - 'Fischereimanagementmaßnahmen in Natura-2000-Gebieten in der AWZ'
  • BALDE-M920-other - 'Nationaler Aktionsplan Stör / Wiederansieldung des Störs (Acipenser sturio)'
  • BALDE-M922-other - 'Positionspapier des Geschäftsbereichs des Bundesumweltministeriums zur kumulativen Bewertung des Seetaucherhabitatverlusts durch Offshore-Windparks in der deutschen AWZ der Nord- und Ostsee als Grundlage für eine Übereinkunft des BfN mit dem BSH; Einführung eines neuen fachlich begründeten Bewertungsverfahrens.'
  • BALDE-M923-other - 'Genehmigungsverfahren für Vorhaben'
  • BALDE-M924-other - 'Maritime Raumordnungspläne des Bundes (AWZ) und der Länder (Küstengewässer)'
  • BALDE-M926-other - 'Umsetzung der  neuen Gemeinsame Fischereipolitik (GFP)'
  • BALDE-M927-other - 'Umsetzung der Regelungen in den Landesfischereigesetzen'
  • BALDE-M928-other - 'Regelungen nach BNatSchG und LNatSchG, insb. FFH-Verträglichkeitsprüfung, Arten- und Biotopschutz sowie Regelungen zur Vermeidung und Kompensation von Eingriffen'
  • BALDE-M929-other - 'Integriertes Küstenzonenmanagement'
  • BALDE-M930-other - 'Abfallwirtschaft (Pfandsysteme und Verwertungsquoten für Verpackungen, Deponieverbot für Kunststoffe, Abfallvermeidung)'
  • BALDE-M931-other - 'Verbot der Einbringung von Abfällen in die Hohe See'
  • BALDE-M932-other - 'Vorgaben für Hafenauffangeinrichtungen, Mülltagebücher und Müllbehandlungspläne'
  • BALDE-M933-other - 'Schiffsabfallregelungen: Hafenstaatkontrolle, Sondergebiete nach MARPOL Anlage V'
  • BALDE-M004-WFD - 'Bau und Erweiterung Abwasserbehandlungsanlagen / Weitergehende Abwasserbehandlung : Ausbau kommunaler Kläranlagen zur Reduzierung sonstiger Stoffeinträge'
  • BALDE-M008-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Anschluss bisher nicht angeschlossener Gebiete an bestehende Kläranlagen'
  • BALDE-M009-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Sonstige Maßnahmen zur Reduzierung der Stoffeinträge durch kommunale Abwassereinleitungen'
  • BALDE-M010-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Neubau und Anpassung von Anlagen zur Ableitung, Behandlung und zum Rückhalt von Misch- und Niederschlagswasser'
  • BALDE-M011-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Optimierung der Betriebsweise von Anlagen zur Ableitung, Behandlung und zum Rückhalt von Misch- und Niederschlagswasser'
  • BALDE-M012-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Sonstige Maßnahmen zur Reduzierung der Stoffeinträge durch Misch- und Niederschlagswassereinleitungen'
  • BALDE-M016-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Bergbau : Maßnahmen zur Reduzierung punktueller Stoffeinträge aus dem Bergbau'
  • BALDE-M017-WFD - 'Wärmelastpläne : Maßnahmen zur Reduzierung der Belastungen durch Wärmeeinleitungen'
  • BALDE-M018-WFD - 'Maßnahmen zur Einstellung von Emissionen, Einleitungen und Verlusten prioritärer gefährlicher Stoffe oder der Reduzierung von Emissionen, Einleitungen und Verlusten prioritärer Stoffe : Maßnahmen zur Reduzierung der Stoffeinträge aus anderen Punktquellen'
  • BALDE-M024-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Bergbau : Maßnahmen zur Reduzierung diffuser Belastungen infolge Bergbau'
  • BALDE-M026-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Maßnahmen zur Reduzierung diffuser Stoffeinträge von befestigten Flächen'
  • BALDE-M032-WFD - 'Reduzierung der Pestizidbelastung aus der Landwirtschaft : Maßnahmen zur Reduzierung der Einträge von Pflanzenschutzmitteln aus der Landwirtschaft'
  • BALDE-M035-WFD - 'Maßnahmen zur Vermeidung oder zum Schutz vor den nachteiligen Auswirkungen durch Verschmutzung aus besiedelten Gebieten, Transport und Bau von Infrastruktur : Maßnahmen zur Vermeidung von unfallbedingten Einträgen'
  • BALDE-M036-WFD - 'Maßnahmen zur Einstellung von Emissionen, Einleitungen und Verlusten prioritärer gefährlicher Stoffe oder der Reduzierung von Emissionen, Einleitungen und Verlusten prioritärer Stoffe : Maßnahmen zur Reduzierung der Belastungen aus anderen diffusen Quellen'
  • BALDE-M064-WFD - 'Maßnahmen zur Reduzierung von nutzungsbedingten Abflussspitzen'
  • BALDE-M068-WFD - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische : Maßnahmen zur Herstellung der linearen Durchgängigkeit an Talsperren, Rückhaltebecken, Speichern und Fischteichen im Hauptschluss'
  • BALDE-M069-WFD - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische : Maßnahmen zur Herstellung/Verbesserung der linearen Durchgängigkeit an Staustufen/Flusssperren, Abstürzen, Durchlässen und sonstigen wasserbaulichen Anlagen gemäß DIN 4048 bzw. 19700 Teil 13'
  • BALDE-M070-WFD - 'Maßnahmen zur Habitatverbesserung durch Initiieren / Zulassen einer eigendynamischen Gewässerentwicklung'
  • BALDE-M071-WFD - 'Maßnahmen zur Habitatverbesserung im vorhandenen Profil'
  • BALDE-M072-WFD - 'Maßnahmen zur Habitatverbesserung im Gewässer durch Laufveränderung, Ufer- oder Sohlgestaltung'
  • BALDE-M073-WFD - 'Maßnahmen zur Habitatverbesserung im Uferbereich'
  • BALDE-M074-WFD - 'Maßnahmen zur Auenentwicklung und zur Verbesserung von Habitaten'
  • BALDE-M075-WFD - 'Anschluss von Seitengewässern, Altarmen (Quervernetzung)'
  • BALDE-M076-WFD - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische : Technische und betriebliche Maßnahmen vorrangig zum Fischschutz an wasserbaulichen Anlagen'
  • BALDE-M077-WFD - 'Maßnahmen zur Verbesserung des Geschiebehaushaltes bzw. Sedimentmanagement'
  • BALDE-M094-WFD - 'Maßnahmen zur Eindämmung eingeschleppter Spezies'
  • BALDE-M101-WFD - 'Maßnahmen zur Verringerung ungesteuerter diffuser stofflicher Belastungen, z.B. durch Entnahme von Sedimenten, mit ggf. anschließender Behandlung, Verwertung und Entsorgung : Maßnahmen zur Reduzierung stofflicher Belastungen aus Sedimenten'
  • BALDE-M405-UZ2-01 - 'Kriterien und Anreizsysteme für umweltfreundliche Schiffe'
  • BALDE-M406-UZ2-02 - 'Vorgaben zur Einleitung und Entsorgung von Waschwässern aus Abgasreinigungsanlagen von Schiffen'
  • BALDE-M407-UZ2-03 - 'Verhütung und Bekämpfung von Meeresverschmutzungen – Verbesserung der maritimen Notfallvorsorge und des Notfallmanagements'
  • BALDE-M408-UZ2-04 - 'Umgang mit Munitionsaltlasten im Meer'
  • BALDE-M409-UZ3-01 - 'Aufnahme von für das Ökosystem wertbestimmenden Arten und Biotoptypen in Schutzgebietsverordnungen'
  • BALDE-M410-UZ3-02 - 'Maßnahmen zum Schutz von wandernden Arten im marinen Bereich'
  • BALDE-M411-UZ4-01 - 'Weitere Verankerung des Themas „nachhaltige ökosystemgerechte Fischerei“ im öffentlichen Bewusstsein'
  • BALDE-M412-UZ4-02 - 'Fischereimaßnahmen'
  • BALDE-M415-UZ4-05 - 'Umweltgerechtes Management von marinen Sand- und Kiesressourcen für den Küstenschutz in Mecklenburg-Vorpommern (Ostsee)'
  • BALDE-M416-UZ5-01 - 'Verankerung des Themas Meeresmüll in Lehrzielen, Lehrplänen und -material'
  • BALDE-M417-UZ5-02 - 'Modifikation / Substitution von Produkten unter Berücksichtigung einer ökobilanzierten Gesamtbetrachtung'
  • BALDE-M418-UZ5-03 - 'Vermeidung des Einsatzes von primären Mikroplastikpartikeln'
  • BALDE-M419-UZ5-04 - 'Reduktion der Einträge von Kunststoffmüll, z.B. Plastikverpackungen, in die Meeresumwelt'
  • BALDE-M420-UZ5-05 - 'Müllbezogene Maßnahmen zu Fischereinetzen und -geräten'
  • BALDE-M421-UZ5-06 - 'Etablierung des "Fishing-for-Litter"-Konzepts'
  • BALDE-M422-UZ5-07 - 'Reduzierung bereits vorhandenen Mülls im Meer'
  • BALDE-M423-UZ5-08 - 'Reduzierung des Plastikaufkommens durch kommunale Vorgaben'
  • BALDE-M424-UZ5-09 - 'Reduzierung der Emission und des Eintrags von Mikroplastikpartikeln'
  • BALDE-M425-UZ6-01 - 'Ableitung und Anwendung von biologischen Grenzwerten für die Wirkung von Unterwasserlärm auf relevante Arten'
  • BALDE-M426-UZ6-02 - 'Aufbau eines Registers für relevante Schallquellen und Schockwellen und Etablierung standardisierter verbindlicher Berichtspflichten'
  • BALDE-M427-UZ6-03 - 'Lärmkartierung der deutschen Meeresgebiete'
  • BALDE-M428-UZ6-04 - 'Entwicklung und Anwendung von Lärmminderungsmaßnahmen für die Nord- und Ostsee'
  • BALDE-M429-UZ6-05 - 'Ableitung und Anwendung von Schwellenwerten für Wärmeeinträge'
  • BALDE-M430-UZ6-06 - 'Entwicklung und Anwendung umweltverträglicher Beleuchtung von Offshore-Installationen und begleitende Maßnahmen'
  • BALDE-M501-WFD - 'Erstellung von Konzeptionen / Studien / Gutachten'
  • BALDE-M502-WFD - 'Durchführung von Forschungs-, Entwicklungs- und Demonstrationsvorhaben : Durchführung von Forschungs-, Entwicklungs- und Demonstrationsvorhaben'
  • BALDE-M503-WFD - 'Informations- und Fortbildungsmaßnahmen'
  • BALDE-M505-WFD - 'Einrichtung bzw. Anpassung von Förderprogrammen'
  • BALDE-M508-WFD - 'Vertiefende Untersuchungen und Kontrollen'
  • BALDE-M903-other - 'Laufender Prozess der Stoffpriorisierung durch die EU-Kommission'
  • BALDE-M904-other - 'Verbot von TBT und anderen meeresumweltgefährdenden Stoffen'
  • BALDE-M905-other - 'Einstellen des Quecksilber-verfahrens in der Chlor-Alkali Industrie (bis 2010) und Redukti-on von Quecksilber-Einleitungen und -Emissionen aus Chlor-Alkali-Produktion'
  • BALDE-M906-other - 'Maßnahmen im Zuge der Umsetzung der Industrieemissionsrichtlinie'
  • BALDE-M907-other - 'Umsetzung der Genfer Luftreinhaltekonvention (Göteborg- und Aarhus-Protokolle)'
  • BALDE-M908-other - 'Umsetzung des MARPOL-Übereinkommens (Anlagen I, II, III, V und VI)'
  • BALDE-M909-other - 'PSSA Ostsee'
  • BALDE-M910-other - 'WRRL-Maßnahmen zur Wiederherstellung der Durchgängigkeit der Gewässer sowie Rückbau von Wanderungshindernissen und Schaffung von funktionsfähigen Auf- und Abstiegshilfen für Wanderfische'
  • BALDE-M911-other - 'Ballastwasserbehandlungssysteme und -management'
  • BALDE-M912-other - 'Implementierung der Verordnung (EU) Nr. 708/2007 über die Verwendung nicht heimischer und gebietsfremder Arten in der Aquakultur'
  • BALDE-M913-other - 'Implementierung der Verordnung (EU) Nr. 1143/2014 über die Prävention und das Management der Einbringung und Ausbreitung invasiver gebietsfremder Arten'
  • BALDE-M914-other - 'Meeresschutzgebiete in der AWZ der deutschen Nord- und Ostsee'
  • BALDE-M915-other - 'Meeresschutzgebiete im Küstengewässer der deutschen Nord- und Ostsee'
  • BALDE-M916-other - 'Arten- und Biotopschutz'
  • BALDE-M917-other - 'Fischereiliche Regelungen in Schutzgebietsverordnungen und Landesfischereigesetzen'
  • BALDE-M918-other - 'Freiwillige Vereinbarungen zum Schutz von Arten und Lebensräumen'
  • BALDE-M919-other - 'Fischereimanagementmaßnahmen in Natura-2000-Gebieten in der AWZ'
  • BALDE-M920-other - 'Nationaler Aktionsplan Stör / Wiederansieldung des Störs (Acipenser sturio)'
  • BALDE-M922-other - 'Positionspapier des Geschäftsbereichs des Bundesumweltministeriums zur kumulativen Bewertung des Seetaucherhabitatverlusts durch Offshore-Windparks in der deutschen AWZ der Nord- und Ostsee als Grundlage für eine Übereinkunft des BfN mit dem BSH; Einführung eines neuen fachlich begründeten Bewertungsverfahrens.'
  • BALDE-M923-other - 'Genehmigungsverfahren für Vorhaben'
  • BALDE-M924-other - 'Maritime Raumordnungspläne des Bundes (AWZ) und der Länder (Küstengewässer)'
  • BALDE-M926-other - 'Umsetzung der  neuen Gemeinsame Fischereipolitik (GFP)'
  • BALDE-M927-other - 'Umsetzung der Regelungen in den Landesfischereigesetzen'
  • BALDE-M928-other - 'Regelungen nach BNatSchG und LNatSchG, insb. FFH-Verträglichkeitsprüfung, Arten- und Biotopschutz sowie Regelungen zur Vermeidung und Kompensation von Eingriffen'
  • BALDE-M929-other - 'Integriertes Küstenzonenmanagement'
  • BALDE-M930-other - 'Abfallwirtschaft (Pfandsysteme und Verwertungsquoten für Verpackungen, Deponieverbot für Kunststoffe, Abfallvermeidung)'
  • BALDE-M931-other - 'Verbot der Einbringung von Abfällen in die Hohe See'
  • BALDE-M932-other - 'Vorgaben für Hafenauffangeinrichtungen, Mülltagebücher und Müllbehandlungspläne'
  • BALDE-M933-other - 'Schiffsabfallregelungen: Hafenstaatkontrolle, Sondergebiete nach MARPOL Anlage V'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALEE-M002 - 'Compiling regional aquaculture plans to manage environmental pressures'
  • BALEE-M003 - 'Increasing knowledge on non-indigenous species to control their spread'
  • BALEE-M004 - 'Ratification and implementation of the International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWMC), and participating in the regional information system'
  • BALEE-M009 - 'Creating ready-to-use liquefied natural gas (LNG) as ship fuel'
  • BALEE-M010 - 'Management of direct discharges of storm water to minimise the load of nutrients, contaminants and litter'
  • BALFI-M006-EUTRO - 'EUTRO6 - Assessment of the importance of the Baltic Sea's internal nutrient stores and the possibilities for reducing these'
  • BALFI-M006-EUTRO - 'EUTRO6 - Assessment of the importance of the Baltic Sea's internal nutrient stores and the possibilities for reducing these'
  • BALFI-M006-EUTRO - 'EUTRO6 - Assessment of the importance of the Baltic Sea's internal nutrient stores and the possibilities for reducing these'
  • BALFI-M006-EUTRO - 'EUTRO6 - Assessment of the importance of the Baltic Sea's internal nutrient stores and the possibilities for reducing these'
  • BALFI-M006-EUTRO - 'EUTRO6 - Assessment of the importance of the Baltic Sea's internal nutrient stores and the possibilities for reducing these'
  • BALFI-M006-EUTRO - 'EUTRO6 - Assessment of the importance of the Baltic Sea's internal nutrient stores and the possibilities for reducing these'
  • BALFI-M006-EUTRO - 'EUTRO6 - Assessment of the importance of the Baltic Sea's internal nutrient stores and the possibilities for reducing these'
  • ANSSE-M034 - 'National environmental targets'
  • ANSSE-M036 - 'Water Management Regulation 2004: 660'
  • BALSE-M036 - 'Water Management Regulation 2004: 661'
  • ANSSE-M034 - 'National environmental targets'
  • ANSSE-M036 - 'Water Management Regulation 2004: 660'
  • BALSE-M036 - 'Water Management Regulation 2004: 661'
  • ANSSE-M034 - 'National environmental targets'
  • ANSSE-M036 - 'Water Management Regulation 2004: 660'
  • BALSE-M036 - 'Water Management Regulation 2004: 661'
  • ANSSE-M034 - 'National environmental targets'
  • ANSSE-M036 - 'Water Management Regulation 2004: 660'
  • BALSE-M036 - 'Water Management Regulation 2004: 661'
  • ANSSE-M034 - 'National environmental targets'
  • ANSSE-M036 - 'Water Management Regulation 2004: 660'
  • BALSE-M036 - 'Water Management Regulation 2004: 661'
  • ANSSE-M034 - 'National environmental targets'
  • ANSSE-M036 - 'Water Management Regulation 2004: 660'
  • BALSE-M036 - 'Water Management Regulation 2004: 661'
  • ANSSE-M034 - 'National environmental targets'
  • ANSSE-M036 - 'Water Management Regulation 2004: 660'
  • BALSE-M036 - 'Water Management Regulation 2004: 661'
Coverage of measures
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring was in place by 2018
Adequate monitoring is in place by July 2020
Adequate monitoring is in place by July 2020
Adequate monitoring is in place by July 2020
Adequate monitoring is in place by July 2020
Adequate monitoring is in place by July 2020
Adequate monitoring is in place by July 2020
Adequate monitoring is in place by July 2020
Adequate monitoring is in place by July 2020
Adequate monitoring is in place by July 2020
Adequate monitoring is in place by July 2020
Adequate monitoring is in place by July 2020
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring was in place in 2014
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Adequate monitoring will be in place by 2024
Related monitoring programmes
  • BALDE_MPr_087_MP_037
  • BALDE_MPr_087_MP_041
  • BALDE_MPr_092_MP_039
  • BALDE_MPr_087_MP_037
  • BALDE_MPr_087_MP_041
  • BALDE_MPr_092_MP_039
  • BALDE_MPr_087_MP_037
  • BALDE_MPr_087_MP_041
  • BALDE_MPr_092_MP_039
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • BALEE-D00-40_MarineAndCoastalActivities
  • BALEE-D010405-10_Phytop
  • BALEE-D010405-11_Zoopl
  • BALEE-D02-18_NISRiskAreas
  • BALEE-D02-19_NISDynImpact
  • BALEE-D05-21_AlgalBlooms
  • BALEE-D05-23_NutrientWaterColumn
  • BALEE-D05-24_WaterColumnChem
  • BALEE-D0507-25_WaterColumnPhys
  • BALEE-D07-26_PhysCharWaves
  • BALEE-D07-27_Ice
  • 04
  • 06pel-1
  • 06pel-2
  • 06pel-3
  • 06pel-4
  • 06pel-5
  • BALFI-d01
  • BALFI-d05-1
  • BALFI-d05-2
  • 04
  • 06pel-1
  • 06pel-2
  • 06pel-3
  • 06pel-4
  • 06pel-5
  • BALFI-d01
  • BALFI-d05-1
  • BALFI-d05-2
  • 04
  • 06pel-1
  • 06pel-2
  • 06pel-3
  • 06pel-4
  • 06pel-5
  • BALFI-d01
  • BALFI-d05-1
  • BALFI-d05-2
  • 04
  • 06pel-1
  • 06pel-2
  • 06pel-3
  • 06pel-4
  • 06pel-5
  • BALFI-d01
  • BALFI-d05-1
  • BALFI-d05-2
  • 04
  • 06pel-1
  • 06pel-2
  • 06pel-3
  • 06pel-4
  • 06pel-5
  • BALFI-d01
  • BALFI-d05-1
  • BALFI-d05-2
  • 04
  • 06pel-1
  • 06pel-2
  • 06pel-3
  • 06pel-4
  • 06pel-5
  • BALFI-d01
  • BALFI-d05-1
  • BALFI-d05-2
  • 04
  • 06pel-1
  • 06pel-2
  • 06pel-3
  • 06pel-4
  • 06pel-5
  • BALFI-d01
  • BALFI-d05-1
  • BALFI-d05-2
  • BALLT-D024_Zoopl
  • BALLT-D025_Phyto
  • BALLT-D057_WaterPhys
  • BALLT-D05_ChlA
  • BALLT-D05_Nutrients
  • BALLT-D05_WaterChem
  • BALLT-D07_HydroMeteo
  • BALLT-D07_WavesCurrents
  • BALLT-D024_Zoopl
  • BALLT-D025_Phyto
  • BALLT-D057_WaterPhys
  • BALLT-D05_ChlA
  • BALLT-D05_Nutrients
  • BALLT-D05_WaterChem
  • BALLT-D07_HydroMeteo
  • BALLT-D07_WavesCurrents
  • BALLT-D024_Zoopl
  • BALLT-D025_Phyto
  • BALLT-D057_WaterPhys
  • BALLT-D05_ChlA
  • BALLT-D05_Nutrients
  • BALLT-D05_WaterChem
  • BALLT-D07_HydroMeteo
  • BALLT-D07_WavesCurrents
  • BALLT-D024_Zoopl
  • BALLT-D025_Phyto
  • BALLT-D057_WaterPhys
  • BALLT-D05_ChlA
  • BALLT-D05_Nutrients
  • BALLT-D05_WaterChem
  • BALLT-D07_HydroMeteo
  • BALLT-D07_WavesCurrents
  • BALLT-D024_Zoopl
  • BALLT-D025_Phyto
  • BALLT-D057_WaterPhys
  • BALLT-D05_ChlA
  • BALLT-D05_Nutrients
  • BALLT-D05_WaterChem
  • BALLT-D07_HydroMeteo
  • BALLT-D07_WavesCurrents
  • BALLT-D024_Zoopl
  • BALLT-D025_Phyto
  • BALLT-D057_WaterPhys
  • BALLT-D05_ChlA
  • BALLT-D05_Nutrients
  • BALLT-D05_WaterChem
  • BALLT-D07_HydroMeteo
  • BALLT-D07_WavesCurrents
  • BALLT-D024_Zoopl
  • BALLT-D025_Phyto
  • BALLT-D057_WaterPhys
  • BALLT-D05_ChlA
  • BALLT-D05_Nutrients
  • BALLT-D05_WaterChem
  • BALLT-D07_HydroMeteo
  • BALLT-D07_WavesCurrents
  • BALLT-D024_Zoopl
  • BALLT-D025_Phyto
  • BALLT-D057_WaterPhys
  • BALLT-D05_ChlA
  • BALLT-D05_Nutrients
  • BALLT-D05_WaterChem
  • BALLT-D07_HydroMeteo
  • BALLT-D07_WavesCurrents
  • LV-4.1.2.1. (D1C6)
  • PL-D1.6-01
  • PL-D1.6-02
  • PL-D1.6-01
  • PL-D1.6-02
  • PL-D1.6-01
  • PL-D1.6-02
  • PL-D1.6-01
  • PL-D1.6-02
  • SE-D1D4-zooplankton
  • SE-D1D4D5-phytoplankton
  • SE-D1D5-optical
  • SE-D1D5-oxygenph
  • SE-D1D5D7-remote
  • SE-D1D7-tempsalinity
  • SE-D1D7-wavecurrents
  • SE-D1D4-zooplankton
  • SE-D1D4D5-phytoplankton
  • SE-D1D5-optical
  • SE-D1D5-oxygenph
  • SE-D1D5D7-remote
  • SE-D1D7-tempsalinity
  • SE-D1D7-wavecurrents
  • SE-D1D4-zooplankton
  • SE-D1D4D5-phytoplankton
  • SE-D1D5-optical
  • SE-D1D5-oxygenph
  • SE-D1D5D7-remote
  • SE-D1D7-tempsalinity
  • SE-D1D7-wavecurrents
  • SE-D1D4-zooplankton
  • SE-D1D4D5-phytoplankton
  • SE-D1D5-optical
  • SE-D1D5-oxygenph
  • SE-D1D5D7-remote
  • SE-D1D7-tempsalinity
  • SE-D1D7-wavecurrents
  • SE-D1D4-zooplankton
  • SE-D1D4D5-phytoplankton
  • SE-D1D5-optical
  • SE-D1D5-oxygenph
  • SE-D1D5D7-remote
  • SE-D1D7-tempsalinity
  • SE-D1D7-wavecurrents
  • SE-D1D4-zooplankton
  • SE-D1D4D5-phytoplankton
  • SE-D1D5-optical
  • SE-D1D5-oxygenph
  • SE-D1D5D7-remote
  • SE-D1D7-tempsalinity
  • SE-D1D7-wavecurrents
  • SE-D1D4-zooplankton
  • SE-D1D4D5-phytoplankton
  • SE-D1D5-optical
  • SE-D1D5-oxygenph
  • SE-D1D5D7-remote
  • SE-D1D7-tempsalinity
  • SE-D1D7-wavecurrents
Programme code
BALDE_MPr_087_MP_037
BALDE_MPr_087_MP_041
BALDE_MPr_092_MP_039
BALEE-D00-40_MarineAndCoastalActivities
BALEE-D010405-10_Phytop
BALEE-D010405-11_Zoopl
BALEE-D02-18_NISRiskAreas
BALEE-D02-19_NISDynImpact
BALEE-D05-21_AlgalBlooms
BALEE-D05-23_NutrientWaterColumn
BALEE-D05-24_WaterColumnChem
BALEE-D0507-25_WaterColumnPhys
BALEE-D07-26_PhysCharWaves
BALEE-D07-27_Ice
BALFI-D01,04,06pel-1
BALFI-D01,04,06pel-2
BALFI-D01,04,06pel-3
BALFI-D01,04,06pel-4
BALFI-D01,04,06pel-5
BALFI-D05-1
BALFI-D05-2
BALLT-D024_Zoopl
BALLT-D025_Phyto
BALLT-D057_WaterPhys
BALLT-D05_ChlA
BALLT-D05_Nutrients
BALLT-D05_WaterChem
BALLT-D07_HydroMeteo
BALLT-D07_WavesCurrents
LV-4.1.2.1. (D1C6)
PL-D1.6-01
PL-D1.6-01
PL-D1.6-02
PL-D1.6-02
SE-D1D4-zooplankton
SE-D1D4D5-phytoplankton
SE-D1D5-optical
SE-D1D5-oxygenph
SE-D1D5D7-remote
SE-D1D7-tempsalinity
SE-D1D7-wavecurrents
Programme name
Pelagische Habitate - Merkmale der Artengemeinschaften: Zooplankton (Ostsee)
Pelagische Habitate - Merkmale der Artengemeinschaften: Phytoplankton – Artenzusammensetzung, Abundanz, Biomasse (Ostsee)
Planktonblüten (Biomasse, Frequenz): Phytoplankton – Chlorophyll a und Blüten (Ostsee)
Marine and coastal activities
Phytoplankton species composition, abundance and biomass
Zooplankton species composition, abundance and biomass
Non-indigenous species – harbours and adjacent regions
Non-indigenous species – abundance and biomass
Harmful blooms (remote sensing)
Nutrient levels in water column
Water column – chemical characteristics
Water column – physical characteristics
Hydrological characteristics
Ice cover
Zooplankton species composition and abundance
Phytoplankton species composition, abundance and biomass
Public bathing site pathogens
Water column physical characteristics
Waves, sea level and ice
Water column - chemical characteristics
Nutrient inputs - land-based sources
BALLT-D024_Zoopl
BALLT-D025_Phyto
BALLT-D057_WaterPhys
BALLT-D05_ChlA
BALLT-D05_Nutrients
BALLT-D05_WaterChem
BALLT-D07_HydroMeteo
BALLT-D07_WavesCurrents
Pelagic habitats community characteristics (phytoplankton community)
Pelagic habitats - community characteristics
Pelagic habitats - community characteristics
Plankton blooms (biomass, frequency)
Plankton blooms (biomass, frequency)
Zooplankton
Phytoplankton (including pelagic bacteria and harmful algal blooms)
Water column – optical properties
Water column – chemical characteristics (oxygen and pH)
Remote sensing of the water column
Water column – physical characteristics (temp, ice cover, salinity)
Water column – hydrological characteristics (currents, wave action, sea-level)
Update type
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Modified from 2014
Same programme as in 2014
Same programme as in 2014
Modified from 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
Same programme as in 2014
New programme
New programme
New programme
New programme
New programme
Modified from 2014
Modified from 2014
Modified from 2014
Modified from 2014
New programme
Modified from 2014
Modified from 2014
Old programme codes
  • BALDE_Sub_087
  • BALDE_Sub_087
  • BALDE_Sub_092
  • BALEE-D00-39_CoastalOffshoreActivities
  • BALEE-D02-18_NISRiskAreas
  • ANSSE-PEL-D14-Djurplankton
  • BALSE-PEL-D14-Djurplankton
  • ANSSE-PEL-D145-Algblomning
  • ANSSE-PEL-D145-Pigment
  • ANSSE-PEL-D145-Vaxtplankton
  • BALSE-PEL-D145-Algblomning
  • BALSE-PEL-D145-Pigment
  • BALSE-PEL-D145-Vaxtplankton
  • ANSSE-EUTRO-D5-Transparens
  • BALSE-EUTRO-D5-Transparens
  • ANSSE-EUTRO-D5-Forsurning
  • ANSSE-EUTRO-D514-Syre
  • BALSE-EUTRO-D5-Forsurning
  • BALSE-EUTRO-D514-Syre
  • ANSSE-HYDRO-D7-Tempsalt
  • BALSE-HYDRO-D7-Tempsalt
  • ANSSE-HYDRO-D7-Strommar
  • BALSE-HYDRO-D7-Strommar
Programme description
Das Monitoring-Programm besteht aus den/dem folgenden Messprogramm/en (=MP): || BALDE_MP_37 || Zooplankton (Ostsee) || Das Monitoring-Programm dient der Erfassung der saisonalen Artenzusammensetzung, Abundanz und Biomasse des Phyto- und Zooplanktons an ausgewählten Messstationen in den Küstengewässern und in der offenen Ostsee. Die Daten dienen der Bewertung verschiedener HELCOM-Indikatoren sowie der Bewertung der biologischen Qualitätskomponente Phytoplankton gemäß WRRL Die im Monitoring-Programm erhobenen Daten dienen der Umsetzung der MSRL und des HELCOM-Übereinkommens. Die regionale Koordination findet im Rahmen von HELCOM statt. Die Messdaten werden national erhoben, die Datenerhebung folgt aber den Vorgaben von HELCOM, insbesondere des COMBINE Manuals (HELCOM Cooperative Monitoring in the Baltic Marine Environment). Im Rahmen von HELCOM werden die Daten in regelmäßig aktualisierten Indikatorkennblättern veröffentlicht und fließen in den HELCOM „State of the Baltic Sea“ Bericht ein. Da sich gegenwärtig sowohl die Küstengewässer als auch die offene Ostsee nicht in einem guten Zustand hinsichtlich Eutrophierung befinden und deshalb davon ausgegangen wird, dass sich auch die pelagischen Habitate nicht in einem guten Zustand befinden, wird in keinem der Messprogramme dieses Monitoring-Programms ein risikobasierter Ansatz angewendet.
Das Monitoring-Programm besteht aus den/dem folgenden Messprogramm/en (=MP): || BALDE_MP_41 || Phytoplankton – Artenzusammensetzung, Abundanz, Biomasse (Ostsee) || Das Monitoring-Programm dient der Erfassung der saisonalen Artenzusammensetzung, Abundanz und Biomasse des Phyto- und Zooplanktons an ausgewählten Messstationen in den Küstengewässern und in der offenen Ostsee. Die Daten dienen der Bewertung verschiedener HELCOM-Indikatoren sowie der Bewertung der biologischen Qualitätskomponente Phytoplankton gemäß WRRL Die im Monitoring-Programm erhobenen Daten dienen der Umsetzung der MSRL und des HELCOM-Übereinkommens. Die regionale Koordination findet im Rahmen von HELCOM statt. Die Messdaten werden national erhoben, die Datenerhebung folgt aber den Vorgaben von HELCOM, insbesondere des COMBINE Manuals (HELCOM Cooperative Monitoring in the Baltic Marine Environment). Im Rahmen von HELCOM werden die Daten in regelmäßig aktualisierten Indikatorkennblättern veröffentlicht und fließen in den HELCOM „State of the Baltic Sea“ Bericht ein. Da sich gegenwärtig sowohl die Küstengewässer als auch die offene Ostsee nicht in einem guten Zustand hinsichtlich Eutrophierung befinden und deshalb davon ausgegangen wird, dass sich auch die pelagischen Habitate nicht in einem guten Zustand befinden, wird in keinem der Messprogramme dieses Monitoring-Programms ein risikobasierter Ansatz angewendet.
Das Monitoring-Programm besteht aus den/dem folgenden Messprogramm/en (=MP): || BALDE_MP_39 || Phytoplankton – Chlorophyll a und Blüten (Ostsee) || Das Monitoring-Programm dient der Erfassung der Plankton-Biomasse und des Auftretens sowie der Frequenz schädlicher Plankton-Blüten in den Küstengewässern und in der offenen Ostsee. Die Daten dienen der Bewertung verschiedener HELCOM-Indikatoren sowie der Bewertung der biologischen Qualitätskomponente Phytoplankton gemäß WRRL. Die im Monitoring-Programm erhobenen Daten dienen der Umsetzung der MSRL, WRRL, Nitrat-RL und des HELCOM-Übereinkommens. Die regionale Koordination findet im Rahmen von HELCOM statt. Die Messdaten werden national erhoben, die Datenerhebung folgt aber den Vorgaben von HELCOM, insbesondere des COMBINE Manuals (HELCOM Cooperative Monitoring in the Baltic Marine Environment). Im Rahmen von HELCOM werden die Daten in regelmäßig aktualisierten Indikatorkennblättern veröffentlicht und fließen in den HELCOM „State of the Baltic Sea“ Bericht ein. Da sich gegenwärtig sowohl die Küstengewässer als auch die offene Ostsee nicht in einem guten Zustand hinsichtlich Eutrophierung befinden und deshalb davon ausgegangen wird, dass sich auch die pelagischen Habitate nicht in einem guten Zustand befinden, wird kein risikobasierter Ansatz angewendet. Die in-situ Messungen werden durch räumlich und zeitlich hoch aufgelöste Satellitendaten der Chlorophyll-a Konzentrationen und von Cyanobakterienblüten ergänzt.
The aim of the monitoring programme is to collect data on human activities that directly or indirectly impact the marine environment. The monitored human activities are those listed in the MSFD Annex III Table 2b (2017/845/EC) and relevant for point (c) of Article 8(1), and Articles 10 and 13. The following activities are covered: Coastal defence and flood protection; Offshore structures (other than for oil/gas/renewables); Restructuring of seabed morphology, including dredging and depositing of materials; Extraction of minerals; Extraction of oil and gas, including infrastructure; Extraction of water; Renewable energy generation (wind, wave and tidal power), including infrastructure; Transmission of electricity and communications (cables); Fish harvesting (professional, recreational); Fish and shellfish processing; Marine plant harvesting; Hunting and collecting for other purposes; Aquaculture — marine, including infrastructure; Transport infrastructure; Transport — shipping; Waste treatment and disposal; Tourism and leisure infrastructure; Tourism and leisure activities; Military operations and Research, survey and educational activities. Data are gathered at least once during a six-year assessment period, but in some cases also annually. The system of such data collection activities is still under development. The programme corresponds to the following monitoring programmes in the indicative list: Activities extracting living resources (fisheries including recreational, marine plant harvesting, hunting and collecting); Activities extracting non-living resources (sand, gravel, dredging); Activities producing food (aquaculture); Activities with permanent infrastructures (e.g. renewable energy, oil & gas, ports) or structural changes (e.g. coastal defences); Sea-based mobile activities (shipping, boating); Coastal human activities (e.g. tourism, recreational sports, ecotourism). The programme is the further development of the programme presented in 2014. The code of the programme also changed.
The aim of the programme is to monitor phytoplankton communities (species composition, abundance, biomass and seasonal cycle of dominant groups) in the water column. It provides data to monitoring strategy “SD5 – Eutrophication”, as well as “SD1.6 Biodiversity – pelagic habitats”, “SD4/SD1 Food webs / Biodiversity – ecosystems” and “SD2– Non-indigenous species”. The programme is related to GES Descriptor D5, Criterion D5C2, Descriptor D1, Criterion D1C6 and Descriptor D4, Criterion D4C1. Data are gathered to assess spatial variability, temporal trends and environmental status in coastal water bodies and off-shore sub-basins of the Baltic Sea (HELCOM divisions) in response to pressure levels. Monitoring is conducted yearly or at least once in six years with a frequency of 5 to 12 times a year at the designated monitoring stations (at least 3 stations in each coastal water body and 11 in the Estonian off-shore areas). The program is regionally coordinated via HELCOM and the HELCOM monitoring manual is followed. Data are yearly reported to the national environmental monitoring database KESE (by 1 March) and ICES (HELCOM Combine). The threshold values for the indicator of seasonal succession of dominating phytoplankton groups are still missing for some assessment units of the Baltic Sea (incl. Estonian marine area), mainly due to the lack of data corresponding to the set criteria. The programme is essentially the same as in 2014, only minor changes in some monitoring stations and frequencies were undertaken. The programme corresponds to the following monitoring programmes in the indicative list: Pelagic habitats – community characteristics.
The aim of the programme is to monitor species composition, abundance and biomass of mesozooplankton. It provides data to monitoring strategy “SD1.6 Biodiversity – pelagic habitats”, as well as “SD2-Non-indigenous species” and “SD4/SD1 Food webs / Biodiversity – ecosystems”. The programme is related to GES Descriptors D1, Criterion D1C6, Description D2 Criterions D2C1 and D2C2 and Descriptor D4 Criterion D4C2. Data are gathered to assess the state of the marine environment and environmental status in three coastal water bodies and all off-shore sub-basins of the Baltic Sea (HELCOM sub-divisions) as well as pressures from/by non-indigenous species. Monitoring is conducted yearly with a frequency 10 times a year at the designated coastal monitoring stations (3 stations in each coastal water body) and with frequency twice a year for 16 stations in the Estonian off-shore areas. The program is regionally coordinated via HELCOM and the HELCOM guidelines are followed. Data are yearly reported to the national environmental monitoring database KESE (by 1 March) and ICES (HELCOM Combine). Mesozooplankton Mean Size Total Stock indicator is developed by HELCOM on the basis of mesozooplankton data. The threshold values for the indicator have been internationally agreed for some sub-basins, but not for the Gulf of Riga yet. The programme is essentially the same as in 2014, only minor changes in some monitoring stations and frequencies were undertaken. The programme corresponds to the following monitoring programmes in the indicative list: Pelagic habitats – community characteristics.
The aim of the programme is to monitor the occurrence and abundance/biomass of non-indigenous phytoplankton, zooplankton, macrozoobenthos and fish in harbours and adjacent areas. Port NIS monitoring is carried out in one port (Muuga) with the identified highest risk for introduction of new non-indigenous species, while monitoring of adjacent areas is performed for three harbours. In addition, species-specific monitoring covers a few most invasive non-indigenous species: the round goby Neogobius melanostomus, Chinese mitten crab Eriocheir sinensis and Harris mud crab Rhithropanopeus harrisii. The programme provides data to monitoring strategy “SD2 – Non-indigenous species ”. The programme is primarily related to GES Descriptor D2, Criteria D2C1, D2C2 and D2C3; but also contributes to D1, D4 and D6. Monitoring is conducted annually at the designated monitoring stations with organism-group specific monitoring designs. The monitoring, data collection and assessment quality are assured by regional coordination via HELCOM, including following the OSPAR/HELCOM port biological monitoring guidelines. The data are yearly reported to the environmental monitoring database KESE (by 1 March). The programme has been modified since 2014 by adding species-specific monitoring. The programme corresponds to the following monitoring programmes in the indicative list: Non-indigenous species inputs - from specific sources; Non-indigenous species - abundance and/or biomass.
The aim of the programme is to cover all major organism groups (phyto/zooplankton, phyto/zoobenthos, fish) and monitor both, pelagic and benthic communities (abundance/biomass and proportion of non-indigenous species in zooplankton and macrozoobenthos communities, abundance/biomass of mobile species, and biopollution level index). Most of the data and information used originate from other monitoring strategies and programmes. The programme provides data to monitoring strategy “SD2 – Non-indigenous species ”. The programme is primarily related to GES Descriptor D2, Criteria D2C1, D2C2 and D2C3; but also contributes to D1, D4 and D6. Monitoring is conducted annually at the designated monitoring stations with organism-group specific monitoring designs. The assessment unit is the whole Estonian marine area. The monitoring and assessment quality is assured by regional coordination via HELCOM and following the HELCOM monitoring guidelines. The data are yearly reported to the environmental monitoring database KESE (by 1 March). The threshold values for indicators required for MSFD assessments have been defined (nationally, except for the biopollution level). The programme corresponds to the following monitoring programmes in the indicative list: Non-indigenous species - abundance and/or biomass.
The aim of the programme is to monitor the surface accumulation of phytoplankton using remote sensing data. It provides data to monitoring strategy “SD5 – Eutrophication” and is related to GES Descriptor D5, Criterion D5C3. The status of mostly off-shore sub-basins of the Baltic Sea (HELCOM sub-divisions) is assessed. Monitoring is conducted continuously. The program is regionally coordinated via HELCOM, and commonly developed and agreed algorithms are used. Algorithms and assessment methods (thresholds) are under development. The programme is essentially the same as in 2014, only minor changes: the satellites in use have been changed. The programme corresponds to the following monitoring programmes in the indicative list: Plankton blooms (biomass, frequency).
The aim of the programme is to monitor nutrient levels (total nitrogen, total phosphorus, NO3+NO2-N, NH4-N, PO4-P, SiO4-Si) in the water column. It provides data to monitoring strategy “SD5 – Eutrophication”, as well as “SD1.6 Biodiversity – pelagic habitats”. The programme is related to GES Descriptor D5, Criterion D5C1 and anthropogenic pressure “Input of nutrients” (MSFD Annex III). Data are gathered to assess the pressure levels in the marine environment and environmental status in coastal water bodies and off-shore sub-basins of the Baltic Sea (HELCOM sub-divisions). Monitoring is conducted yearly or at least once in six years with a frequency of 6 to 12 times a year at the designated monitoring stations (at least 3 stations in each coastal water body and 18 in the Estonian off-shore areas). The programme data collection is regionally coordinated via HELCOM and the HELCOM guidelines are followed. The data are yearly reported to the national environmental monitoring database KESE (by 1 March) and HELCOM ICES database (by 1 May). The threshold values for the indicators of concentrations of inorganic nitrogen and phosphorus in coastal waters have still to be developed. The programme is not designed to assess the internal and transboundary loads of nutrients. The programme is essentially the same as in 2014, only minor changes in some monitoring stations and frequencies were undertaken. The programme corresponds to the following monitoring programmes in the indicative list: Water column – chemical characteristics.
The aim of the programme is to monitor chemical characteristics in the water column (including near-bottom layer) to assess the indirect effects of eutrophication and describe conditions of the pelagic and benthic habitats. It provides data to monitoring strategy “SD5 – Eutrophication” and is related to GES Descriptor D5, Criterion D5C5. Data are gathered to assess the environmental status in coastal water bodies and off-shore sub-basins of the Baltic Sea (HELCOM sub-divisions). Monitoring is conducted yearly or at least once in six years with a frequency of 6 to 12 times a year at the designated monitoring stations (at least three stations in each coastal water body and 18 in the Estonian off-shore areas). The program data collection is regionally coordinated via HELCOM and the HELCOM guidelines are followed, but data are delivered separately by each country. Data are yearly reported to the environmental monitoring database KESE (by 1 March) and HELCOM ICES database (by 1 May). Monitoring of pCO2 is not continuous yet. The programme is essentially the same as in 2014, only minor changes in some monitoring stations and frequencies were undertaken. The programme corresponds to the following monitoring programmes in the indicative list: Water column – chemical characteristics.
The aim of the programme is to monitor physical characteristics (water temperature, salinity, transparency) in the water column to assess the indirect effects of eutrophication and describe the physical conditions of the pelagic habitats. It provides data to monitoring strategy “SD5 – Eutrophication” and is related to GES Descriptor D5, Criterion D5C4. Data are gathered to assess the environmental status in the coastal water bodies and off-shore sub-basins of the Baltic Sea (HELCOM sub-divisions). Monitoring is conducted yearly or at least once in six years with a frequency of 6 to 12 times a year at the designated monitoring stations (at least three stations in each coastal water body and 18 in the Estonian off-shore areas). The program data collection is regionally coordinated via HELCOM and the HELCOM guidelines are followed, but data are delivered separately by each country (except CMEMS/BOOS monitoring with joint data collection). The data are yearly reported to the environmental monitoring database KESE (by 1 March), HELCOM ICES database (by 1 May) and online data delivery into CMEMS/BOOS databases. The programme is essentially the same as in 2014, only minor changes in some monitoring stations and frequencies were undertaken. The programme corresponds to the following monitoring programmes in the indicative list: Water column – physical characteristics.
The aim of the programme is to monitor hydrological characteristics in the marine areas to describe the physical/hydrological conditions of the benthic and pelagic habitats. Data on sea level, waves, and currents are acquired at sea, mostly using autonomous devices and numerical models. Both, coastal water bodies and the off-shore sub-basins of the Baltic Sea (HELCOM division) are monitored. Monitoring is conducted continuously. The program is regionally coordinated via BOOS and Baltic CMEMS (joint data collection). The data are delivered near real-time. The programme is essentially the same as in 2014, only minor changes in some monitoring stations and frequencies were undertaken. The programme corresponds to the following monitoring programmes in the indicative list: Water column – hydrological characteristics.
The aim of the programme is to monitor characteristics of the ice cover. Data are collected by visual observations and remote sensing. Both, coastal water bodies and off-shore sub-basins of the Baltic Sea (HELCOM sub-divisions) are monitored. Monitoring is conducted continuously during winter. The program is regionally coordinated (joint data collection) via Baltic Sea Ice Services and a common product is produced. The data are delivered daily. The programme corresponds to the following monitoring programmes in the indicative list: Ice cover.
Zooplankton species composition, abundance and biomass
Phytoplankton species composition, abundance and biomass are monitored by counting phytoplankton from preserved water samples to identify changes in phytoplankton communities (e.g. harmful and invasive species
Monitoring is done only on public bathing sites along the Finnish coast. Monitoring is based on water samples from public bathing sites.
Monitoring of physical and chemical characteristics (temperature, salinity, secchi-depth). Other indicators such as density is calculated based on measurements made.
Program monitors wave action, sea level and ice cover in the Baltic Sea.
The sub-programme monitors the state of the basic chemical properties of the water column in the Baltic Sea and their changes. Surveillance is carried out in Finland’s exclusive economic zone (EEZ), both offshore and coastal areas. Monitoring also includes stations in Swedish, Estonian and Russian waters.
The sub-programme monitors the discharge of nutrients, solids and organic matter from the catchment area into the sea, as well as nitrogen deposition. They end up in the sea by deposition, with rivers and – as direct point pollution – from urban waste water treatment plants, industrial plants, fish farms, peat production and fur farms. The objective of the monitoring is to estimate load levels and long-term changes.
Valstybinis aplinkos monitoringas vykdomas pagal Valstybinę 2018-2023 m. programą. Monitoringo programos dalis BALLT-D024_Zoopl apima zooplanktono gausumo, biomasės, rūšinės sudėties, lyties ir vystymosi stadijos tyrimus Baltijos jūros tyrimų rajonuose BAL-LT-AA-01; BAL-LT-AA-02; BAL-LT-AA-03. Monitoringas vykdomas mokslinių tyrimų laivu „Vėjūnas“. Duomenys renkami kasmet, 16 stočių, 2 kartus per metus (pavasarį ir vasarą) BAL-LT-AA-01 ir BAL-LT-AA-02; 1-2 kartus per metus BAL-LT-AA-03 rajone. Duomenys naudojami pelaginėms buveinėms pagal D1, mitybos tinklams pagal D4, vertinti. Renkamų duomenų pagrindu vertinamas D4 rodiklis: Zooplanktono vidutinis dydis ir bendras išteklius (BAL-LT-AA-01; BAL-LT-AA-02; BAL-LT-AA-03 jūros rajonams) Duomenys kaupiami Lietuvos aplinkos apsaugos agentūros duomenų bazėje. Kasmet teikiami ICES.
Valstybinis aplinkos monitoringas vykdomas pagal Valstybinę 2018-2023 m. programą. Monitoringo programos dalis BALLT-D025_Phyto apima fitoplanktono gausumo, biomasės, rūšinės sudėties tyrimus Baltijos jūros tyrimų rajonuose BAL-LT-AA-01; BAL-LT-AA-02; BAL-LT-AA-03. Monitoringas vykdomas mokslinių tyrimų laivu „Vėjūnas“. Duomenys renkami kasmet, vidutiniškai 3-7 kartus per metus (dažnumas skiriasi skirtinguose rajonuose: BAL-LT-AA-01 ir BAL-LT-AA-02 – 3-7 kartai per metus; BAL-LT-AA-03 rajone tyrimai atliekami 1-4 kartus per metus). Duomenys naudojami pelaginėms buveinėms pagal D1, mitybos tinklams pagal D4, eutrofikacijai pagal D5 vertinti. Renkamų duomenų pagrindu vertinamias D4 rodiklis: Sezoninė dominuojančių fitoplanktono grupių kaita (tik BAL-LT-AA-01 jūros rajonui) Duomenys kaupiami Lietuvos aplinkos apsaugos agentūros duomenų bazėje. Kasmet teikiami ICES.
Valstybinis aplinkos monitoringas vykdomas pagal Valstybinę 2018-2023 m. programą. Monitoringo programos dalis BALLT-D057_WaterPhys apima vandens temperatūros, druskingumo, skaidrumo matavimus Baltijos jūros tyrimų rajonuose BAL-LT-AA-01; BAL-LT-AA-02; BAL-LT-AA-03. Monitoringas vykdomas mokslinių tyrimų laivu „Vėjūnas“. Duomenys renkami viso 23 monitoringo vietose (19 vietų intensyviai, 4 vietose ekstensyviai). Tyrimai vykdomi vidutiniškai 4-7 kartus per metus (dažnumas skiriasi skirtinguose rajonuose: BAL-LT-AA-01 ir BAL-LT-AA-02 – 4-7 kartai per metus; BAL-LT-AA-03 rajone tyrimai atliekami 1-4 kartus per metus). Duomenys naudojami pelaginėms buveinėms pagal D1, hidrografinėms sąlygoms pagal D7 vertinti. Renkamų duomenų pagrindu vertinami D5 rodikliai: 1) Vidutinis vandens skaidrumas vasarą (BAL-LT-AA-01 ir BAL-LT-AA-03); 2) Vidutinis metinis vandens skaidrumas (BAL-LT-AA-03). Duomenys kaupiami Lietuvos aplinkos apsaugos agentūros duomenų bazėje. Kasmet teikiami ICES, WISE.
Valstybinis aplinkos monitoringas vykdomas pagal Valstybinę 2018-2023 m. programą. Monitoringo programos dalis BALLT-D05_ChlA apima fitoplanktono pigmento Chlorofilo-a tyrimus Baltijos jūros tyrimų rajonuose BAL-LT-AA-01; BAL-LT-AA-02; BAL-LT-AA-03. Monitoringas vykdomas mokslinių tyrimų laivu „Vėjūnas“. Duomenys renkami kasmet, 18 tyrimų vietų, vidutiniškai 4-7 kartus per metus (dažnumas skiriasi skirtinguose rajonuose: BAL-LT-AA-01 ir BAL-LT-AA-02 – 4-7 kartai per metus; BAL-LT-AA-03 rajone tyrimai atliekami 1-4 kartus per metus). Kitose 4 tyrimų vietose tyrimai vykdomi ekstensyviai. Duomenys naudojami pelaginėms buveinėms pagal D1, eutrofikacijai pagal D5 vertinti. Renkamų duomenų pagrindu vertinami D5 rodikliai: 1) Vidutinė vasaros chlorofilo "a" koncentracija (BAL-LT-AA-01, BAL-LT-AA-02 ir BAL-LT-AA-03); 2) Vidutinė metinė chlorofilo „a“ koncentracija (BAL-LT-AA-03). Duomenys kaupiami Lietuvos aplinkos apsaugos agentūros duomenų bazėje. Kasmet teikiami ICES, WISE.
Valstybinis aplinkos monitoringas vykdomas pagal Valstybinę 2018-2023 m. programą. Monitoringo programos dalis BALLT-D05_Nutrients apima maistingųjų medžiagų (NO2-N, NO3-N, NH4-N, Bendras N, PO4-P, Bendras P, silicis) matavimus Baltijos jūros tyrimų rajonuose BAL-LT-AA-01; BAL-LT-AA-02; BAL-LT-AA-03. Monitoringas vykdomas mokslinių tyrimų laivu „Vėjūnas“. Parametrai matuojami kasmet, 18 tyrimų vietų, vidutiniškai 4-7 kartus per metus (dažnumas skiriasi skirtinguose rajonuose: BAL-LT-AA-01 ir BAL-LT-AA-02 – 4-7 kartai per metus; BAL-LT-AA-03 rajone tyrimai atliekami 1-4 kartus per metus). Kitose 4 tyrimų vietose tyrimai vykdomi ekstensyviai. Duomenys naudojami eutrofikacijai pagal D5 vertinti. Renkamų duomenų pagrindu vertinami D5 rodikliai: 1) Vidutinė bendro azoto koncentracija vasarą (BAL-LT-AA-01 ir BAL-LT-AA-02); 2) Vidutinė bendro fosforo koncentracija vasarą (BAL-LT-AA-01 ir BAL-LT-AA-02); 3) Vidutinė metinė bendro azoto koncentracija (BAL-LT-AA-03); 4) Vidutinė metinė bendro fosforo koncentracija (BAL-LT-AA-03); 5) Ištirpusio neorganinio azoto koncentracija žiemą (BAL-LT-AA-03); 6) Ištirpusio neorganinio fosforo koncentracija žiemą (BAL-LT-AA-03).
Valstybinis aplinkos monitoringas vykdomas pagal Valstybinę 2018-2023 m. programą. Monitoringo programos dalis BALLT-D05_WaterChem apima ištirpusio deguonies, pH, sieros vandenilio (giluminiame jūros rajone) matavimus Baltijos jūros tyrimų rajonuose BAL-LT-AA-01; BAL-LT-AA-02; BAL-LT-AA-03. Monitoringas vykdomas mokslinių tyrimų laivu „Vėjūnas“. Parametrai matuojami kasmet, 18 tyrimų vietų, vidutiniškai 4-7 kartus per metus (dažnumas skiriasi skirtinguose rajonuose: BAL-LT-AA-01 ir BAL-LT-AA-02 – 4-7 kartai per metus; BAL-LT-AA-03 rajone tyrimai atliekami 1-4 kartus per metus). Kitose 4 tyrimų vietose tyrimai vykdomi ekstensyviai. Duomenys naudojami vertinant pelagines buveines pagal D1, eutrofikacijai pagal D5, hidrografinėms sąlygoms pagal D7 vertinti. Duomenys kaupiami Lietuvos aplinkos apsaugos agentūros duomenų bazėje.
Valstybinis aplinkos monitoringas vykdomas pagal Valstybinę 2018-2023 m. programą. Monitoringo programos dalis BALLT-D07_HydroMeteo apima hidrometeorologinių parametrų matavimus Baltijos jūros tyrimų rajonuose BAL-LT-AA-01; BAL-LT-AA-02; BAL-LT-AA-03. Matuojami parametrai: oro temperatūra, vėjo kryptis, greitis, atmosferos slėgis, oro drėgnis, matomumas, debesys (kiekiai, formos, aukštis), ledo reiškiniai (ledų kiekis, forma, storis). Monitoringas vykdomas mokslinių tyrimų laivu „Vėjūnas“. Parametrai matuojami kasmet, 19 tyrimų vietų, vidutiniškai 4-7 kartus per metus (dažnumas skiriasi skirtinguose rajonuose: BAL-LT-AA-01 ir BAL-LT-AA-02 – 4-7 kartai per metus; BAL-LT-AA-03 rajone tyrimai atliekami 1-4 kartus per metus). Kitose 4 tyrimų vietose tyrimai vykdomi ekstensyviai. Duomenys papildomai naudojami vertinant hidrologinius duomenis pelaginėms buveinėms pagal D1, hidrografinėms sąlygoms pagal D7 vertinti. Atsižvelgiama vertinant vandens skaidrumą pagal D5. Duomenys kaupiami Lietuvos aplinkos apsaugos agentūros duomenų bazėje.
Valstybinis aplinkos monitoringas vykdomas pagal Valstybinę 2018-2023 m. programą. Monitoringo programos dalis BALLT-D07_WavesCurrents apima vandens bangų ir srovių matavimus Baltijos jūros tyrimų rajonuose BAL-LT-AA-01; BAL-LT-AA-02; BAL-LT-AA-03. Monitoringas vykdomas mokslinių tyrimų laivu „Vėjūnas“. Bangų rodikliai (kryptis, periodas, aukštis) matuojami kasmet, 19 tyrimų vietų, vidutiniškai 4-7 kartus per metus (dažnumas skiriasi skirtinguose rajonuose: BAL-LT-AA-01 ir BAL-LT-AA-02 – 4-7 kartai per metus; BAL-LT-AA-03 rajone tyrimai atliekami 1-4 kartus per metus). Srovių parametrai (kryptis, greitis) matuojami pavasario ir vasaros tyrimų reisų metu 3 monitoringo vietose. Duomenys naudojami pelaginėms buveinėms pagal D1, hidrografinėms sąlygoms pagal D7 vertinti. Duomenys kaupiami Lietuvos aplinkos apsaugos agentūros duomenų bazėje.
The purpose of the monitoring is to assess the ecological status of the Baltic Sea, including one of the environmental status indicators biodiversity by the measurements of parameters of spring bloom phytoplankton species composition, abundance and biomass to assess the impact on environment caused by eutrophication and other kinds of anthropogenic pressures with the main emphasis on Diatom/Dinoflagellate index which is characterizing changes in food chains. Monitoring is carried out within the framework of the HELCOM monitoring program, in cooperation with the other Member States. Corresponding HELCOM monitoring programme topic "Phytoplankton" and programme Phytoplankton species composition, abundance and biomass. There are no HELCOM core indicators linked to the programme at this time. The pre-core indicator Diatom/Dinoflagellate index (Dia/Dino index) is being tested. The requirements for the marine waters of Latvia and the relationship of the specified environmental objectives with the qualitative characteristics characterizing the state of the marine environment are included in Regulation of the Cabinet of Ministers of Republic of Latvia No. 1071 of 23 November 2010, Requirements for the Assessment of the State of the Marine Environment, the Determination of Good Environmental State of the Sea and Development of Marine Environmental Goals.
Monitoring programme of pelagic habitats – community characteristics includes the determination of the characteristics and variability of phytoplankton and zooplankton communities in PMA. Monitoring is carried out annually in 10 locations in accordance with the HELCOM guidelines. For the transitional and coastal waterbodies monitoring will be carried out for 19 monitoring points in 2020-2021 and 11 monitoring points in 2022-2025 in accordance with the WFD monitoring programme, carried out under the surface water monitoring programme for the years 2020-2025 ("Strategic State Environmental Monitoring Programme for the years 2020-2025"), approved by the Competent Minister of Climate in 2020 and the surface water executive programme for a specific year of research approved annually by the Chief Inspector of Environmental Protection.
Monitoring programme of pelagic habitats – community characteristics includes the determination of the characteristics and variability of phytoplankton and zooplankton communities in PMA. Monitoring is carried out annually in 10 locations in accordance with the HELCOM guidelines. For the transitional and coastal waterbodies monitoring will be carried out for 19 monitoring points in 2020-2021 and 11 monitoring points in 2022-2025 in accordance with the WFD monitoring programme, carried out under the surface water monitoring programme for the years 2020-2025 ("Strategic State Environmental Monitoring Programme for the years 2020-2025"), approved by the Competent Minister of Climate in 2020 and the surface water executive programme for a specific year of research approved annually by the Chief Inspector of Environmental Protection.
In scope of phytoplankton blooms, data on frequency and extent of blooms collected within the monitoring programme of pelagic habitats – community characteristics will be supplemented with information on chlorophyll a concentration in the water column collected from 23 stations located in PMA. The frequency of measurements is 6 times a year except for high frequency station (ZP6) which should be sampled 12 times a year. Data on phytoplankton blooms and chlorophyll a concentration will be supplemented with available open source remote sensing products (from satellite systems). For the transitional and coastal waterbodies monitoring will be carried out for 19 monitoring points in 2020-2021 and 11 monitoring points in 2022-2025 in accordance with the WFD monitoring programme, carried out under the surface water monitoring programme for the years 2020-2025 ("Strategic State Environmental Monitoring Programme for the years 2020-2025"), approved by the Competent Minister of Climate in 2020 and the surface water executive programme for a specific year of research approved annually by the Chief Inspector of Environmental Protection.
In scope of phytoplankton blooms, data on frequency and extent of blooms collected within the monitoring programme of pelagic habitats – community characteristics will be supplemented with information on chlorophyll a concentration in the water column collected from 23 stations located in PMA. The frequency of measurements is 6 times a year except for high frequency station (ZP6) which should be sampled 12 times a year. Data on phytoplankton blooms and chlorophyll a concentration will be supplemented with available open source remote sensing products (from satellite systems). For the transitional and coastal waterbodies monitoring will be carried out for 19 monitoring points in 2020-2021 and 11 monitoring points in 2022-2025 in accordance with the WFD monitoring programme, carried out under the surface water monitoring programme for the years 2020-2025 ("Strategic State Environmental Monitoring Programme for the years 2020-2025"), approved by the Competent Minister of Climate in 2020 and the surface water executive programme for a specific year of research approved annually by the Chief Inspector of Environmental Protection.
Zooplankton are located between phytoplankton and fish in the food web and thus constitute an important link as they can reduce the amount of phytoplankton acting as predators and at the same time act as food for species higher up in the trophy levels such as fish. Different groups of zooplankton have different functions in the food web as some are herbivores and others carnivores. By monitoring abundance, species diversity, and the biomass of zooplankton, one can thus capture potential changes in the food web as a result of, for example, eutrophication, fishing or other human activities. Zooplankton monitoring started in the Baltic Sea in the early 1970s, but regular data is only available at data hosts from 1994. In the North Sea, regular monitoring started in 1998. Since 2007, continuous sampling of gelatinous zooplankton has been ongoing at Släggö in Gullmarsfjorden and in 2020 the monitoring was extended to other zooplankton stations.
The purposes of monitoring phytoplankton, blooms, bacterioplankton and primary production are to follow short- and longterm effects of eutrophication, climate change and changes in foodwebs. Monitoring is conducted in both offshore and coastal areas as well as in areas with more pressures in terms of run-offs and point sources. Starting year: Regular monitoring of phytoplankton started in 1983 in the Baltic Sea and 1986 in the North Sea. Chorophyll a has been monitored since 1982. Earliest data on bacterioplankton is available from 1989 and primary production from 1979. Algae blooms has been monitored using remote sensing since 2002. Specify frequency: 1-26 times a year Algae blooms – Daily There is an ongoing work on developing improved methods and, above all, collaboration in the area of remotely analyzed chlorophyll using satellites.
The optical properties of water refer to the conditions for light to be able to travel through the body of water. The Secchi depth is a property that is measured to assess the transparency of the water, but to gain more knowledge about the color and turbidity of the water, it is also important to measure chlorophyll, turbidity, colored disolved organic material (CDOM) and suspended particulate matter (SPM). Monitoring the water's optical properties is among other things a prerequisite for being able to develop remote sensing models. In the Gulf of Bothnia and the coastal waters of the Baltic Sea, it is difficult to monitor chlorophyll with remote sensing because these areas are highly affected by CDOM and SPM, which have a similar color to chlorophyll. The development of new methods and models (remote sensing algorithms) for better estimates of chlorophyll is therefore dependent on observational data of chlorophyll, CDOM and SPM for calibration / validation of the remote sensing results, see more in programme Remote sensing of the water column. Eutrophication and climate change can be the underlying causes of changes in the water's optical properties. The color and turbidity of the water are affected by both living and dead material in the water mass. Living material, such as phytoplankton, is controlled by for example weather and nutrient supply while the amount of dead material is controlled by for example runoff from land and land use. The goal is that the monitoring of the water's optical properties in combination with remote sensing of the water column should be able to follow changes over time, and be able to link the changes to human activities. Coordinated measurements of the "optical properties of the water" began in the Gulf of Bothnia and the Baltic Proper in 2018 and are under development. Secchi depth have been measured in its current form since 1993, but observations are available from national data hosts from 1967. Chlorophyll a is measured for various purposes, and has since 2018 been measured according to a new method that is suitable for monitoring the water's optical properties in support of remote sensing. For other monitoring of chlorophyll a, see programme Phytoplankton (including pelagic bacteria and harmful algal blooms). There is data on CDOM from 2017 within the project SEAmBOTH. However, humic substances, which is a similar parameter, has been measured since 1975. Measurements of SPM within the national environmental monitorin
Oxygen supply in the water mass is a prerequisite for most marine organisms and a lack of oxygen can thus have major effects on marine habitats and biodiversity. Changed oxygen concentration can be an effect of eutrophication as an increased amount of nutrients leads to increased production of biomass which when it is decomposed consumes oxygen. Changes in oxygen concentrations may also be due to hydrographic or climate-related conditions. The ocean is acidified as an effect of carbon dioxide emissions that have led to increased carbon dioxide levels in the atmosphere. When carbon dioxide is dissolved in seawater, carbonic acid is formed, which leads to falling pH and the oceans becoming more acidic. Sea acidification can also be caused by exhaust fumes, from for example ships and industry, containing sulfur- and nitric oxid. In the air these oxids are converted into sulfuric acid and nitric acid, which reacts with water droplets that acidify the seawater. Sea acidification can have far-reaching consequences for organisms and ecosystems. Among other things by affecting the species that have shells or skeletons of lime. Climate change and ocean acidification are expected to together lead to changes in the distribution of species and food webs. Oxygen measurements from the Baltic Sea are available from the 1890s, but the measurements are sparse and have low reliability due to unreliable measurement technology. Since 1902, the oxygen measurements have been performed using basically the same method, so-called Winkler titration. In the North Sea, oxygen began to be measured in 1970. pH monitoring started in 1993. Monitoring frequency varies between 2-weekly to monthly. Work is underway to develop new methods for monitoring using automated sampling and measurements, for example from ferry box systems or bottom- or buoy-mounted measurement systems. Methods are already in place and routines are being developed for automated measurements of oxygen by the use of probes on ships, buoys and measuring systems, or on moving gliders.
The Sentinel family is a number of satellites that are part of the European space program Copernicus and can be used for environmental monitoring. With their large geographical coverage, satellites are an excellent complement to field measurements of the water column (for example chlorophyll) provided that the satellite products are locally adapted with acceptable accuracy. With the data collected by the satellites and their instruments, various variables can be calculated that can provide better knowledge of the condition in pelagic habitats and the possible extent of the effects of eutrophication. The monitoring complements the field measurements described in the programmes Phytoplankton, Water column - physical characteristics and Water column - optical properties. Sentinel 3A was launched in 2016, and Sentinel 3B in 2018. Data are collected from other satellites further back in time, for example from NASA's SeaWiFS (1997 - 2010). Sentinel 3D, the last of that generation, will be launched in 2021. In addition to monitoring harmful algal blooms during the summer (mainly cyanobacteria in the Baltic Sea), there is no ongoing programme for calculating data obtained by remote sensing, but it is under development. Since 2019, SMHI has been tasked with creating an infrastructure for the production of aquatic products, such as chlorophyll maps (data files), adapted to cover all of Sweden's land and water surfaces, as well as making them publically available. The goal is to have the monitoring in operation by 2022.
The purpose of the monitoring is to study long-term changes in the marine environment with regard to temperature, ice conditions and salinity, which are basic physical parameters in the sea. These, together with pressure, determine the density of the water. The density determines the stratification, which in turn affects the mixture of seawater. Density gradients can impede the transport of substances (for example, the flow of oxygen) to the deep water. Horizontal density gradients create large-scale currents, such as the Baltic surface current along Sweden's west coast. Because marine organisms are adapted to certain temperature and salinity ranges, changes in temperature and salinity can affect the entire food web. Changes can occur because of climate change, but also locally because of the construction of sea-based structures, see also the programme Physical disturbance and loss. The current regular environmental monitoring started in 1993, but measurements have been performed since 1880, for example from Swedish lightships. In-situ data are collected at a high frequency but reworked to give, for example, an average value over a ten-minute measurement period every hour from buoys, or an average value for each half-meter depth from a CTD profile. Measurements with CTD profiles are performed between 1 and 24 times a year, usually in connection with eutrophication sampling. Satellites and merchant ships also contribute with data. Since international collaborations such as EuroGOOS (the European Global Ocean Observing System) make other countries' data available, model products that use this data cover almost the entire North Sea and the entire Baltic Sea. Daily ice maps of the entire Baltic Sea are produced during the period November to May based on satellite data and in-situ data from icebreakers and ice reporters. Work is underway to develop new methods for monitoring using automated sampling and measurements, for example from ferry box systems or bottom- or buoy-mounted measurement systems. Methods are already in place and routines are being developed for automated measurements of temperature, salt and oxygen by the use of probes on ships, buoys and measuring systems, or on moving gliders. Comment: D7C2 was not in the list for the feature Hydrographical changes, but this criteria is relevant for this programme.
The purpose of the monitoring is to study long-term changes in the marine environment with regard to the hydrological condition of the sea. Currents, waves and water levels give rise to a physical impact on marine habitats and in addition have effects on human activities. Currents transport water masses and can thus change the pelagic habitat in a few minutes and gaining insight into how the water masses move is thus central to the understanding of the ecosystem. An example is the inflows to the Baltic Sea, where salty oxygen-rich water enters through the Sound (the strait that separates Sweden and Denmark) during severe storms. This salty oxygen-rich water can replace low-oxygen water in bottom areas in the southern Baltic Sea and improve the oxygen situation for at least a couple of months. Waves are of course also important for both maritime activities and marine life. Waves can both give a resuspension of nutrients in shallow areas (the bottom sediment is stirred up and nutrients, as well as any hazardous substances, can get into the water mass), affect currents and have effects on beach areas (erosion and more). Waves and currents also transport nutrients, organisms and marine litter to the coasts of Sweden from other countries. In addition to a climate indicator, the sea level is a prerequisite for life in the tidal zone and not at least for blue growth. The Swedish Meterological and Hydrological Institiute (SMHI) send out warnings at extreme water levels. High sea levels can have major effects on communities by leading to floods. Low sea levels can affect shipping that may be forced to take detours or go with less cargo. Another example is nuclear power plants whose cooling can potentially be affected. The Swedish measurements of currents began in the early 1880s with measurements from lightships. Data on currents, however, are available from earliest 1945, but the first regular observations started in 1978 when currents began to be measured from lighthouses. Since then, the measurements have developed. Wave measurements by SMHI started in 1978. The serie of measurements of seawater levels in Stockholm is the longest in the world. The measurements started as early as 1774 at Slussen in Stockholm. In 1889, a mareograph was built on Skeppsholmen, which is still active. To complement the current programme, mobile sea level gauges have been tested successfully. There are plans to improve the spatial coverage of current patterns and waves by developing n
Monitoring purpose
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Effectiveness of measures
  • Human activities causing the pressures
  • Pressures at source
  • Pressures in the marine environment
  • Environmental state and impacts
  • Environmental state and impacts
  • Pressures in the marine environment
  • Environmental state and impacts
  • Pressures in the marine environment
  • Environmental state and impacts
  • Pressures in the marine environment
  • Environmental state and impacts
  • Pressures in the marine environment
  • Effectiveness of measures
  • Pressures in the marine environment
  • Environmental state and impacts
  • Pressures in the marine environment
  • Environmental state and impacts
  • Pressures in the marine environment
  • Environmental state and impacts
  • Pressures in the marine environment
  • Environmental state and impacts
  • Pressures in the marine environment
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Pressures at source
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Effectiveness of measures
  • Environmental state and impacts
  • Effectiveness of measures
  • Environmental state and impacts
  • Pressures in the marine environment
  • Effectiveness of measures
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
  • Environmental state and impacts
Other policies and conventions
  • HELCOM Monitoring programmes
  • HELCOM Monitoring programmes
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Nitrates Directive
  • Water Framework Directive
  • Bathing Water Directive
  • Birds Directive
  • Convention on Long-Range Transboundary Air Pollution
  • Data Collection Framework Multi-Annual Plan (Common Fisheries Policy)
  • Habitats Directive
  • IMO-BWM
  • Maritime Spatial Planning Directive
  • Minamata Convention on Mercury
  • Monitoring programme targeting at national legislation
  • National Emission Ceilings Directive
  • Nitrates Directive
  • Stockholm Convention on persistent organic pollutions (POPs)
  • Urban Waste Water Treatment Directive
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Monitoring programme targeting at national legislation
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Habitats Directive
  • Monitoring programme targeting at national legislation
  • Habitats Directive
  • IMO-BWM
  • Invasive Alien Species Regulation
  • Monitoring programme targeting at national legislation
  • Habitats Directive
  • IMO-BWM
  • Invasive Alien Species Regulation
  • Monitoring programme targeting at national legislation
  • Bathing Water Directive
  • Monitoring programme targeting at national legislation
  • Water Framework Directive
  • Monitoring programme targeting at national legislation
  • Nitrates Directive
  • Water Framework Directive
  • Monitoring programme targeting at national legislation
  • Water Framework Directive
  • Habitats Directive
  • Maritime Spatial Planning Directive
  • Habitats Directive
  • Water Framework Directive
  • Habitats Directive
  • Maritime Spatial Planning Directive
  • HELCOM Monitoring programmes
  • HELCOM Monitoring programmes
  • Water Framework Directive
  • Bathing Water Directive
  • HELCOM Monitoring programmes
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • HELCOM Monitoring programmes
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • HELCOM Monitoring programmes
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Nitrates Directive
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Nitrates Directive
  • Urban Waste Water Treatment Directive
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Waste Framework Directive
  • HELCOM Monitoring programmes
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Maritime Spatial Planning Directive
  • Monitoring programme targeting at national legislation
  • OSPAR Coordinated Environmental Monitoring Programme
  • HELCOM Monitoring programmes
  • Maritime Spatial Planning Directive
  • Monitoring programme targeting at national legislation
  • OSPAR Coordinated Environmental Monitoring Programme
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Habitats Directive
  • Maritime Spatial Planning Directive
  • Monitoring programme targeting at national legislation
  • OSPAR Coordinated Environmental Monitoring Programme
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Habitats Directive
  • Maritime Spatial Planning Directive
  • Monitoring programme targeting at national legislation
  • OSPAR Coordinated Environmental Monitoring Programme
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Habitats Directive
  • Maritime Spatial Planning Directive
  • Monitoring programme targeting at national legislation
  • OSPAR Coordinated Environmental Monitoring Programme
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Habitats Directive
  • Maritime Spatial Planning Directive
  • Monitoring programme targeting at national legislation
  • OSPAR Coordinated Environmental Monitoring Programme
  • Water Framework Directive
  • HELCOM Monitoring programmes
  • Habitats Directive
  • Maritime Spatial Planning Directive
  • Monitoring programme targeting at national legislation
  • OSPAR Coordinated Environmental Monitoring Programme
  • Water Framework Directive
Regional cooperation - coordinating body
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • Other
  • Other
  • HELCOM
  • HELCOM
  • Other
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • HELCOM
  • OSPAR
  • HELCOM
  • OSPAR
  • HELCOM
  • OSPAR
  • HELCOM
  • OSPAR
  • HELCOM
  • OSPAR
Regional cooperation - countries involved
  • DE
  • DK
  • EE
  • LT
  • LV
  • PL
  • SE
  • DE
  • DK
  • EE
  • LT
  • LV
  • PL
  • SE
  • DE
  • DK
  • EE
  • LT
  • LV
  • PL
  • SE
  • DE
  • DK
  • EE
  • LT
  • LV
  • PL
  • SE
  • DE
  • DK
  • EE
  • LT
  • LV
  • PL
  • SE
  • DE
  • DK
  • EE
  • LT
  • LV
  • PL
  • SE
Regional cooperation - implementation level
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Joint data collection
Coordinated data collection
Coordinated data collection
Agreed data collection methods
Common monitoring strategy
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Common monitoring strategy
Common monitoring strategy
Common monitoring strategy
Common monitoring strategy
Coordinated data collection
Coordinated data collection
Coordinated data collection
Coordinated data collection
Joint data collection
Monitoring details
|| MP_37 ||
|| MP_41 ||
|| MP_39 ||
Phytoplankton samples are collected with a bathometer at water depths of 1, 5 and 10 m together with samples of seawater chlorophyll a. An integrated sample is made pooling equal amounts of water collected from fixed depths. When the integrated sample is thoroughly mixed, a portion is poured into a clear glass bottle and fixed with preservation chemical for further transport, storage and analysis of the phytoplankton sample. As part of the Ferrybox monitoring, samples are collected with an automatic sampler from depths of 4-5 m from a predefined location on the route of the liner. Phytoplankton is analysed according to the relevant international standard methods (EN 16695: 2015, HELCOM Monitoring Manual). In 3 coastal water bodies sampling is carried out annually 10-12 times per year (from April to October), Haapsalu coastal waterbody - 10-12 times every third year. Other coastal water bodies are monitored in rotation 6 times per year (from June to September) at least once during a 6-year period. In the off-shore areas the research vessel-based monitoring is conducted 5 times per year (from April to October) and 12 times every year in frames of Ferrybox monitoring.
The samples are collected by means of vertical hauls using a Juday or WP-2 net with 0,1 mm mesh size. The collected samples are preserved in a formaldehyde solution to microscopic analysis to be performed in a laboratory.
The phytoplankton, mesozooplankton, zoobenthos, fouling, mobile epifauna and fish monitoring samples are collected in accordance with HELCOM and HELCOM/OSPAR guidelines from two ports and three adjacent areas. Information on NIS occurrence is also gathered from all biological monitoring stations.
Most of the data and information used originate from other monitoring strategies and programmes. Information on NIS occurrence is gathered from all biological monitoring stations.
The monitoring and related indicator(s) are under development. Local applicable algorithms for Sentinel satellites data need to be developed.
Samples are collected from designated monitoring stations with a bathometer at depths of 1, 5 and 10 m and near-bottom layer. As part of the Ferrybox monitoring, samples are collected with an automatic sampler from depths of 4-5 m from a predefined location on the route of the liner with installed equipment. Sampling is carried out annually up to 12 times per year (from June to September) at certain monitoring stations, and in rotation 6 times per year at least once in 6-year period at other monitoring stations. In the off-shore areas the monitoring is conducted 6 times per year and during winter cruise. In addition, samples are collected in frames of Ferrybox monitoring, 12 times every year in the period from April to October.
Dissolved oxygen concentration is measured at designated monitoring stations either in situ with CTD sonde oxygen sensors or in a laboratory from samples collected with a bathometer (surface layer and near-bottom layer). International guidelines are followed measuring H2S, pH and dissolved oxygen concentrations. H2S is measured at deepest monitoring stations in particular. Sampling is carried out annually up to 12 times per year (from June to September) at certain monitoring stations, and in rotation 6 times per year at least once in 6-year period at other monitoring stations. In the off-shore areas monitoring is conducted 6 times per year.
The temperature is measured within water column from surface to bottom with CTD sondes. Transparency is assessed with 30 cm diameter white Secchi disk. As part of the Ferrybox monitoring, the temperature and salinity are registered at depths of 4-5 m from a predefined location on the route of the liner with automatic equipment. CTD water column measurements of temperature and salinity are also being performed at autonomous monitoring buoys. Sampling is carried out annually up to 12 times per year (from June to September) at certain monitoring stations, and in rotation 6 times per year at least once in 6-year period at other monitoring stations. In the off-shore areas monitoring is conducted 6 times per year. Ferrybox, remote (satellite) measurements and measurements at autonomous buoys are being conducted continuously.
Monitoring is conducted at stations with automatic measurement equipment installed (water level, waves and currents measurements).
Ice monitoring is carried out as a part of national meteorological and hydrological monitoring (Estonian Environment Agency). Ice maps are produced in cooperation with Baltic Sea countries. TalTech Marine Systems Institute performs remote monitoring of ice on a project basis in cooperation with other Baltic Sea countries.
Program follows HELCOM Combine - https://helcom.fi/media/publications/Guidelines-for-monitoring-of-mesozooplankton.pdf
Samples are taken onboard research vessels under the coastal monitoring (part of EU WFD) and offshore monitoring.
Sampled from public bathing sites.
HELCOM monitoring manual: http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-manual/hydrography/waves-currents-(sealevel) http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-manual/hydrography/ice
Data is collected by samples from river mouths and by automated recorders. Source identifications is made by numerical modelling and by using reported data by actors.
Zooplanktono mėginiai imami ir analizuojami remiantis HELCOM metodika, tinklu WP-2 (tinklo viršutinis skersmuo 0,255 m2, akučių diametras 100 µm. Mėginiai fiksuojami 4 proc. formaldehido tirpalu. Mėginiai analizuojami mikroskopijos metodu.
Jūros vandens mėginiai imami pagal LST ISO 5667-9:2009, išskyrus 5.1.1 p.; HELCOM tyrimų metodiką. Vandens mėginiai fitoplanktono tyrimams imami plastikiniu batometru, integruotu batometru (0-10 m.), fiksuojami Lugolio tirpalu. Fitoplanktono taksonominės sudėties ir gausumo tyrimai paviršiniame, jūros vandenyje vykdomi pagal HELCOM COMBINE, LST EN 15204:2007, išskyrus 6.3.1 p. LST EN 15972:2011, 7.2.1, 7.2.2, 7.4, 7.5, 7.6, 7.7, 7.8 p. Mėginiai analizuojami atvirkštinės mikroskopijos metodu.
Vandens temperatūra ir druskingumas matuojami CTD zondu, vandens skaidrumas – seki disku.
Jūros vandens mėginiai imami pagal LST ISO 5667-9:2009, išskyrus 5.1.1 p.; HELCOM tyrimų metodiką. Vandens mėginiai chlorofilo a tyrimams imami plastikiniu batometru, integruotu batometru (0-10 m.). Mėginiai laive filtruojami per 0,7 µm filtrus. Analizuojami spektrometriniu metodu.
Mėginiai maistingųjų medžiagų analizei imami CTD zondu su batometrų sistema (12 batometrų: 5 litrų ir 2,5 litrų talpos).
Vandenyje ištirpęs deguonis, pH matuojami automatiškai, ant zondo pritvirtintais davikliais.
Oro temperatūra, santykinė drėgmė, vėjo kryptis ir greitis, atmosferos slėgis matuojami davikliais laive, debesų, bangų, ledų parametrus ekspertas nustato vizualiai.
Srovės matuojamos srovių matuokliu, bangos – vizualiai.
Observations are made at fixed stations, the coordinates of which have been determined in advance. Values of the parameters are measured in the integrated 0.10 m layer sample. Frequency of sampling every year during the period of spring blooming at least 5 times in a year. Samples for the analysis of diatoms and dinoflagellates are collected using sample hose in one replicate from representative stations. The composition of the species and biomass is determined according to the HELCOM COMBINE Manual Guidelines Monitoring of phytoplankton species composition, abundance and biomass. The method is suitable for qualitative (species composition) and quantitative (biomass) detection of phytoplankton organisms in marine and estuary water samples. Cells are counted using the inverted microscope, volume is determined by mathematical formulas, comparing different cell shapes to geometrical figures. By multiplying the number of cells by volume, the population biomass is obtained. When aggregating the calculated biomass of all cells, the taxonomic group and total biomass of the whole sample shall be obtained. In parallel concentration of dissolved silicates is determined in sample.
Data collected 5 times a year in deep and shallow water zones. One high frequency station sampled 12 times a year.
Data collected 5 times a year in deep and shallow water zones. One high frequency station sampled 12 times a year.
Benthic broad habitats
  • Circalittoral coarse sediment
  • Circalittoral mud
  • Circalittoral sand
  • Infralittoral coarse sediment
  • Infralittoral mud
  • Infralittoral sand
  • Offshore circalittoral coarse sediment
  • Offshore circalittoral mud
  • Offshore circalittoral sand
  • D6C5
  • Extent
  • Other
  • Oxygen debt H2S Ph pco2 - alkalinity Concentratio
Pelagic broad habitats
  • Zooplankton communities
  • D1C6
  • Abundance (number of individuals)
  • Biomass
  • Other
  • Relative abundance within community (of pelagic and benthic habitats)
  • Species composition
  • mittlere Größe, Gesamtbesatnd
  • Diatoms & Dinoflagellates
  • D1C6
  • Abundance (number of individuals)
  • Relative abundance within community (of pelagic and benthic habitats)
  • Species composition
  • Coastal pelagic habitat
  • D1C6
  • Extent
  • Other
  • Number of bloom events and duration
  • Coastal pelagic habitat
  • Shelf pelagic habitat
  • D1C6
  • Other
  • Size distribution
  • Biomass; Abundance
  • Coastal pelagic habitat
  • Shelf pelagic habitat
  • D1C6
  • Other
  • Abundance; Species richness
  • Coastal pelagic habitat
  • Variable salinity pelagic habitat
  • D1C6
  • Other
  • salinity
  • temperature
  • Coastal pelagic habitat
  • Shelf pelagic habitat
  • D1C6
  • Other
  • Phytoplankton cell count, species composition, bio
  • Phytoplankton species composition, abundance and b
  • Coastal pelagic habitat
  • Shelf pelagic habitat
  • Variable salinity pelagic habitat
  • D1C6
  • Extent
  • Other
  • Primary production
  • Species composition Cell counts Biomass Productivi
  • Coastal pelagic habitat
  • Shelf pelagic habitat
  • Variable salinity pelagic habitat
  • D1C6
  • Extent
  • Other
  • Transparency / turbidity of water column Concentra
  • Coastal pelagic habitat
  • Shelf pelagic habitat
  • Variable salinity pelagic habitat
  • D1C6
  • Extent
  • Other
  • Oxygen debt Ph pco2 - alkalinity Concentration in
  • Coastal pelagic habitat
  • Shelf pelagic habitat
  • Variable salinity pelagic habitat
  • D1C6
  • Other
  • Concentration in water Transparency of water Trans
  • Coastal pelagic habitat
  • Shelf pelagic habitat
  • Variable salinity pelagic habitat
  • D1C6
  • Extent
  • Other
  • Ice thickness Salinity temperature Hydrological co
  • Coastal pelagic habitat
  • Shelf pelagic habitat
  • Variable salinity pelagic habitat
  • D1C6
  • Extent
  • Other
  • Tidal range/level Current velocity Wave action
Coastal ecosystems
  • Primary producers
  • D4C1
  • D4C2
  • Other
  • Abundance (number of individuals)
  • Biomass
  • Species composition
  • All trophic guilds
  • Secondary producers
  • D4C1
  • D4C2
  • Other
  • Abundance (number of individuals)
  • Biomass
  • Species composition
  • Planktivores
  • D4C3
  • Size distribution
  • Primary producers
  • D4C1
  • Other
  • biomasė ir gausumas
  • Planktivores
  • Secondary producers
  • Sub-apex pelagic predators
  • D4C2
  • Abundance (number of individuals)
  • Biomass
  • Primary producers
  • D4C1
  • D4C2
  • D4C4
  • Other
  • Abundance (number of individuals)
  • Biomass
  • Primary production
  • Productivity
  • Cell counts
  • Species composition
Shelf ecosystems
  • Secondary producers
  • D4C1
  • D4C2
  • D4C3
  • Other
  • Abundance (number of individuals)
  • Biomass
  • Size distribution
  • Diversity
  • Primary producers
  • D4C1
  • D4C2
  • Other
  • Biomass
  • Species richness; Diversity
  • Planktivores
  • Secondary producers
  • Sub-apex pelagic predators
  • D4C2
  • Abundance (number of individuals)
  • Biomass
  • Primary producers
  • D4C1
  • D4C2
  • D4C4
  • Other
  • Abundance (number of individuals)
  • Biomass
  • Primary production
  • Productivity
  • Cell counts
  • Species composition
Input of microbial pathogens
  • Not Applicable
  • D1C6
  • Extent
  • Number of pathogens
Input of nutrients – diffuse sources, point sources, atmospheric deposition
  • Not Applicable
  • NotRelevan
  • Other
  • Pollution load (tonnes/year) - N, P, BHT5
  • Not Applicable
  • NotRelevan
  • Other
  • Nitrogen and phosphorus amount (tons)
Input of organic matter – diffuse sources and point sources
  • Not Applicable
  • NotRelevan
  • Other
  • Organic matter amount (tons)
Input of other substances (e.g. synthetic substances, non-synthetic substances, radionuclides) – diffuse sources, point sources, atmospheric deposition, acute events
  • Not Applicable
  • NotRelevan
  • Other
  • Pollution load (tonnes/year) - Hg, Cd, Cu, Pb, Zn,
Input of litter (solid waste matter, including micro-sized litter)
  • Not Applicable
  • NotRelevan
  • AMO-WC
  • Amount on coastline
  • Amount on seabed
  • Other
  • Amount in sediments; Litter type and material
Input of anthropogenic sound (impulsive, continuous)
  • Not Applicable
  • NotRelevan
  • Level of sound
  • Other
  • Number of disturbance days - Impulsive underwater
Newly introduced non-indigenous species
  • Not Applicable
  • D2C1
  • Other
  • Species composition; Abundance (number of individu
  • Not Applicable
  • D2C1
  • Other
  • Species composition; Abundance (number of individu
  • Not Applicable
  • D2C1
  • Presence
  • Not Applicable
  • D2C1
  • Presence
Established non-indigenous species
  • Benthic habitats - macrobenthic communities
  • Benthic habitats - macrophyte communities
  • Eriocheir sinensis
  • Fouling
  • Mobile epifauna
  • Neogobius melanostomus
  • Phytoplankton communities
  • Rhithropanopeus harrisii
  • Zooplankton communities
  • D2C2
  • Abundance (number of individuals)
  • Biomass
  • Other
  • Species composition
  • Species composition; Relative biomass in community
  • Eriocheir sinensis
  • Neogobius melanostomus
  • Rhithropanopeus harrisii
  • D2C2
  • Abundance (number of individuals)
  • Biomass
  • Species composition
  • Cercopagis pengoi
  • D2C2
  • Abundance (number of individuals)
  • Extent
Hydrographical changes
  • Salinity
  • Temperature
  • Transparency
  • NotRelevan
  • Salinity
  • Temperature
  • Transparency of water
  • Current regime
  • Sea level
  • Wave regime
  • NotRelevan
  • Current velocity
  • Other
  • Direction
  • Significant wave height; Period; Direction
  • Water level
  • Salinity
  • NotRelevan
  • Salinity
  • Salinity
  • Temperature
  • D7C1
  • Other
  • salinity
  • temperature
  • Dissolved oxygen (O2)
  • pH
  • D7C1
  • Other
  • Oxygen
  • pH
  • Ice
  • D7C1
  • Other
  • Ice
  • Current regime
  • Wave regime
  • D7C1
  • Other
  • Currents
  • Waves
  • Transparency
  • Turbidity (silt/sediment loads)
  • D7C1
  • Extent
  • Other
  • Transparency / turbidity of water column
  • Temperature
  • Transparency
  • Turbidity (silt/sediment loads)
  • D7C1
  • Extent
  • Ice
  • Mixing
  • Residence time
  • Salinity
  • Temperature
  • Upwelling
  • D7C1
  • Extent
  • Other
  • Ice thickness
  • Ice thickness temperature Using salinity and tempe
  • Salinity Using salinity and temperature the follow
  • Using salinity and temperature the following param
  • Current regime
  • Sea level
  • Wave regime
  • D7C1
  • Extent
  • Other
  • Current velocity
  • Tidal range/level
  • Wave action
Eutrophication
  • Chlorophyll-a
  • Cyanobacteria
  • D5C2
  • D5C3
  • Concentration in water
  • Abundance (number of individuals)
  • Biomass
  • Duration
  • Other
  • Species composition
  • Cyanobakterien-Blüte-Index
  • Cyanobacteria
  • Maximum concentration of blooming species
  • D5C3
  • Duration
  • Extent
  • Frequency
  • DIP
  • NH4+
  • NO2-N
  • NO3-N
  • Silicate (SiO4)
  • TN
  • TP
  • D5C1
  • Concentration in water
  • Dissolved oxygen (O2)
  • Hydrogen sulfide (H2S)
  • D5C1
  • D5C5
  • Concentration in water
  • Transparency
  • D5C4
  • Transparency of water
  • Cyanobacteria
  • Diatoms & Dinoflagellates
  • D5C3
  • Extent
  • Other
  • Ratio of Diatoms & Dinoflagellates
  • Cyanobacteria
  • D5C3
  • Duration
  • Extent
  • Transparency
  • D5C4
  • Transparency of water
  • DIN
  • DIP
  • Dissolved oxygen (O2)
  • Silicate (SiO4)
  • TOC - total organic carbon
  • TP
  • D5C1
  • D5C5
  • Concentration in water
  • Transparency
  • D5C4
  • Transparency of water
  • Chlorophyll-a
  • D5C2
  • Concentration in water
  • DIN
  • DIP
  • NH4+
  • NO2-N
  • NO3-N
  • Silicate (SiO4)
  • TN
  • TP
  • D5C1
  • Concentration in water
  • Dissolved oxygen (O2)
  • D5C5
  • Concentration in water
  • Oxygen
  • Chlorophyll-a
  • Cyanobacteria
  • D5C2
  • D5C3
  • Concentration in water
  • Extent
  • Frequency
  • Chlorophyll-a
  • Cyanobacteria
  • D5C2
  • D5C3
  • Concentration in water
  • Extent
  • Frequency
  • Chlorophyll-a
  • Cyanobacteria
  • Diatoms & Dinoflagellates
  • Phytoplankton communities
  • D5C2
  • D5C3
  • Concentration in water
  • Duration
  • Extent
  • Frequency
  • CDOM - colored dissolved organic matter
  • Chlorophyll-a
  • Scattering and absorption in the visible light spectrum (400-700 nm)
  • Transparency
  • D5C4
  • NotRelevan
  • Other
  • Transparency of water
  • Concentration in water
  • Concentration in water
  • Dissolved oxygen (O2)
  • D5C5
  • Concentration in water
  • Other
  • Oxygen debt
  • CDOM - colored dissolved organic matter
  • Chlorophyll-a
  • Scattering and absorption in the visible light spectrum (400-700 nm)
  • Transparency
  • D5C2
  • D5C4
  • Concentration in water
  • Transparency of water
Coastal defence and flood protection
  • Not Applicable
  • NotRelevan
  • Other
  • Length of defence structure; Coastline pressure in
Offshore structures (other than for oil/gas/renewables)
  • Not Applicable
  • NotRelevan
  • Other
  • Area of structure; Area pressure index
Extraction of minerals (rock, metal ores, gravel, sand, shell)
  • Not Applicable
  • NotRelevan
  • Other
  • Mining volume; Mining area; Area pressure index
Extraction of oil and gas, including infrastructure
  • Not Applicable
  • NotRelevan
  • Other
  • Pipe length (area); Area pressure index
Extraction of water
  • Not Applicable
  • NotRelevan
  • Other
  • Volume
Renewable energy generation (wind, wave and tidal power), including infrastructure
  • Not Applicable
  • NotRelevan
  • Other
  • Area; Area pressure index
Transmission of electricity and communications (cables)
  • Not Applicable
  • NotRelevan
  • Other
  • Cable length (area); Area pressure index
Fish and shellfish harvesting (professional, recreational)
  • Not Applicable
  • NotRelevan
  • Other
  • Catch; By-catch
Marine plant harvesting
  • Not Applicable
  • NotRelevan
  • Other
  • Amount (kg); Area
Hunting and collecting for other purposes
  • Not Applicable
  • NotRelevan
  • Other
  • Number of individuals hunted by species (waterbird
Aquaculture – marine, including infrastructure
  • Not Applicable
  • NotRelevan
  • Other
  • Production (tonnes); Area; Nutrient load
Transport infrastructure
  • Not Applicable
  • NotRelevan
  • Other
  • Area; Volume (goods and passengers); Number of loa
Transport – shipping
  • Not Applicable
  • NotRelevan
  • Other
  • Number of ships (incl. number of ships complying w
Waste treatment and disposal
  • Not Applicable
  • NotRelevan
  • Other
  • Areas of dumping sites and volume of dumped materi
Tourism and leisure infrastructure
  • Not Applicable
  • NotRelevan
  • Other
  • Number of marinas per coastline; Length of beach
Tourism and leisure activities
  • Not Applicable
  • NotRelevan
  • Other
  • Number of vacationists; Number of visits; People's
Military operations (subject to Article 2(2))
  • Not Applicable
  • NotRelevan
  • Other
  • Number of explosions; Number of trainings; Trainin
Research, survey and educational activities
  • Not Applicable
  • NotRelevan
  • Other
  • Volume of costs on marine researches; Number of re
Restructuring of seabed morphology, including dredging and depositing of materials
  • Not Applicable
  • NotRelevan
  • Other
  • Soil volume; Extent; Area pressure index
Other pelagic habitats
  • Phytoplankton communities
  • D1C6
  • Other
  • Species composition; Abundance (number of individu
  • Zooplankton communities
  • D1C6
  • Other
  • Species composition; Abundance (number of individu
  • Phytoplankton communities
  • Zooplankton communities
  • NotRelevan
  • Abundance (number of individuals)
  • Biomass
  • Species composition
  • Abundance and biomass
  • abundance and biomass
  • Phytoplankton communities
  • Zooplankton communities
  • NotRelevan
  • Abundance (number of individuals)
  • Biomass
  • Species composition
  • Abundance and biomass
  • abundance and biomass
  • Phytoplankton communities
  • D1C6
  • Extent
  • concentration
  • Phytoplankton communities
  • D1C6
  • Extent
  • concentration
  • Zooplankton communities
  • Zooplankton communities - gelatinous
  • D1C6
  • Other
  • Abundance (number of individuals) Biomass Species
  • Abundance (number of individuals), Biomass, Specie
Chemical characteristics
  • DIP
  • NH4+
  • NO2-N
  • NO3-N
  • Silicate (SiO4)
  • TN
  • TP
  • NotRelevan
  • Concentration in water
  • Dissolved oxygen (O2)
  • H2S
  • pH
  • NotRelevan
  • Concentration in water
  • Dissolved carbon dioxide (pCO2)
  • H2S
  • pH
  • NotRelevan
  • pco2 - alkalinity
  • Concentration in water
  • Ph
  • Dissolved oxygen (O2)
  • H2S
  • pH
  • NotRelevan
  • Concentration in water
  • Ph
  • Dissolved carbon dioxide (pCO2)
  • H2S
  • pH
  • NotRelevan
  • pco2 - alkalinity
  • Concentration in water
  • Ph
Physical and hydrological characteristics
  • Salinity
  • Temperature
  • Transparency
  • NotRelevan
  • Salinity
  • Temperature
  • Transparency of water
  • Current regime
  • Sea level
  • Wave regime
  • NotRelevan
  • Current velocity
  • Other
  • Direction
  • Significant wave height; Period; Direction
  • Water level
  • Ice
  • NotRelevan
  • Other
  • Extent; Thickness; Concentration; Ice type
  • Mixing
  • Temperature
  • NotRelevan
  • Other
  • Temperature
  • Stratification of the water column
  • Ice
  • Sea level
  • Wave regime
  • NotRelevan
  • Extent
  • Other
  • Length
  • Wave action
  • Sea level
  • Freshwater input
  • Turbidity (silt/sediment loads)
  • NotRelevan
  • Deposition
  • AMO-WC
  • Temperature
  • Transparency
  • NotRelevan
  • Other
  • temperature
  • transparency
  • Transparency
  • Turbidity (silt/sediment loads)
  • NotRelevan
  • Extent
  • Other
  • Transparency / turbidity of water column
  • Ice
  • Mixing
  • Residence time
  • Temperature
  • Upwelling
  • Water density
  • D7C1
  • Extent
  • Other
  • Ice thickness
  • Ice thickness temperature Using salinity and tempe
  • Using salinity and temperature the following param
  • Water density
  • Current regime
  • Sea level
  • Wave regime
  • D7C1
  • NotRelevan
  • Extent
  • Other
  • Current velocity
  • Tidal range/level
  • Wave action
Spatial scope
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Coastal waters (WFD)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • EEZ (or similar)
  • EEZ (or similar)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • EEZ (or similar)
  • EEZ (or similar)
  • Terrestrial part of MS
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Transitional waters (WFD)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Transitional waters (WFD)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Transitional waters (WFD)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Transitional waters (WFD)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Transitional waters (WFD)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Transitional waters (WFD)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Transitional waters (WFD)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Transitional waters (WFD)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Transitional waters (WFD)
  • EEZ (or similar)
  • EEZ (or similar)
  • EEZ (or similar)
  • EEZ (or similar)
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Beyond MS Marine Waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Beyond MS Marine Waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Beyond MS Marine Waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Beyond MS Marine Waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Beyond MS Marine Waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
  • Coastal waters (WFD)
  • EEZ (or similar)
  • Territorial waters
Marine reporting units
  • BALDE_CW
  • BALDE_EEZ
  • BALDE_CW
  • BALDE_EEZ
  • BALDE_CW
  • BALDE_EEZ
  • BAL-EE-AA
  • BAL-EE-EGB
  • BAL-EE-GF
  • BAL-EE-GR
  • BAL-EE-NBP
  • BAL-EE-AA
  • BAL-EE-EGB
  • BAL-EE-GF
  • BAL-EE-GR
  • BAL-EE-NBP
  • BAL-EGB-EE-EEEE_11
  • BAL-GF-EE-EEEE_01
  • BAL-GF-EE-EEEE_02
  • BAL-GF-EE-EEEE_03
  • BAL-GF-EE-EEEE_05
  • BAL-GF-EE-EEEE_06
  • BAL-GR-EE-EEEE_07
  • BAL-GR-EE-EEEE_08
  • BAL-GR-EE-EEEE_09
  • BAL-GR-EE-EEEE_13
  • BAL-GR-EE-EEEE_14
  • BAL-GR-EE-EEEE_16
  • BAL-GR-EE-EEEE_17
  • BAL-GR-EE-EEEE_18
  • BAL-GR-EE-EEEE_19
  • BAL-NBP-EE-EEEE_10
  • BAL-EE-AA
  • BAL-EE-EGB
  • BAL-EE-GF
  • BAL-EE-GR
  • BAL-EE-NBP
  • BAL-EGB-EE-EEEE_11
  • BAL-GF-EE-EEEE_01
  • BAL-GF-EE-EEEE_02
  • BAL-GF-EE-EEEE_03
  • BAL-GF-EE-EEEE_05
  • BAL-GF-EE-EEEE_06
  • BAL-GR-EE-EEEE_07
  • BAL-GR-EE-EEEE_08
  • BAL-GR-EE-EEEE_09
  • BAL-GR-EE-EEEE_13
  • BAL-GR-EE-EEEE_14
  • BAL-GR-EE-EEEE_16
  • BAL-GR-EE-EEEE_17
  • BAL-GR-EE-EEEE_18
  • BAL-GR-EE-EEEE_19
  • BAL-NBP-EE-EEEE_10
  • BAL-EE-AA
  • BAL-GF-EE-EEEE_01
  • BAL-GF-EE-EEEE_05
  • BAL-GR-EE-EEEE_13
  • BAL-EE-AA
  • BAL-EE-GF
  • BAL-EE-GR
  • BAL-EE-NBP
  • BAL-GF-EE-EEEE_01
  • BAL-GF-EE-EEEE_05
  • BAL-GR-EE-EEEE_13
  • BAL-EE-AA
  • BAL-EE-EGB
  • BAL-EE-GF
  • BAL-EE-GR
  • BAL-EE-NBP
  • BAL-EGB-EE-EEEE_11
  • BAL-GF-EE-EEEE_01
  • BAL-GF-EE-EEEE_02
  • BAL-GF-EE-EEEE_03
  • BAL-GF-EE-EEEE_05
  • BAL-GF-EE-EEEE_06
  • BAL-GR-EE-EEEE_07
  • BAL-GR-EE-EEEE_08
  • BAL-GR-EE-EEEE_09
  • BAL-GR-EE-EEEE_13
  • BAL-GR-EE-EEEE_14
  • BAL-GR-EE-EEEE_16
  • BAL-GR-EE-EEEE_17
  • BAL-GR-EE-EEEE_18
  • BAL-GR-EE-EEEE_19
  • BAL-NBP-EE-EEEE_10
  • BAL-EE-AA
  • BAL-EE-EGB-OFFSHORE
  • BAL-EE-GF-OFFSHORE
  • BAL-EE-GR-OFFSHORE
  • BAL-EE-NBP-OFFSHORE
  • BAL-EGB-EE-EEEE_11
  • BAL-GF-EE-EEEE_01
  • BAL-GF-EE-EEEE_02
  • BAL-GF-EE-EEEE_03
  • BAL-GF-EE-EEEE_05
  • BAL-GF-EE-EEEE_06
  • BAL-GR-EE-EEEE_07
  • BAL-GR-EE-EEEE_08
  • BAL-GR-EE-EEEE_09
  • BAL-GR-EE-EEEE_13
  • BAL-GR-EE-EEEE_14
  • BAL-GR-EE-EEEE_16
  • BAL-GR-EE-EEEE_17
  • BAL-GR-EE-EEEE_18
  • BAL-GR-EE-EEEE_19
  • BAL-NBP-EE-EEEE_10
  • BAL-EE-AA
  • BAL-EE-EGB-OFFSHORE
  • BAL-EE-GF-OFFSHORE
  • BAL-EE-GR-OFFSHORE
  • BAL-EE-NBP-OFFSHORE
  • BAL-EGB-EE-EEEE_11
  • BAL-GF-EE-EEEE_01
  • BAL-GF-EE-EEEE_02
  • BAL-GF-EE-EEEE_03
  • BAL-GF-EE-EEEE_05
  • BAL-GF-EE-EEEE_06
  • BAL-GR-EE-EEEE_07
  • BAL-GR-EE-EEEE_08
  • BAL-GR-EE-EEEE_09
  • BAL-GR-EE-EEEE_13
  • BAL-GR-EE-EEEE_14
  • BAL-GR-EE-EEEE_16
  • BAL-GR-EE-EEEE_17
  • BAL-GR-EE-EEEE_18
  • BAL-GR-EE-EEEE_19
  • BAL-NBP-EE-EEEE_10
  • BAL-EE-AA
  • BAL-EE-EGB-OFFSHORE
  • BAL-EE-GF-OFFSHORE
  • BAL-EE-GR-OFFSHORE
  • BAL-EE-NBP-OFFSHORE
  • BAL-EGB-EE-EEEE_11
  • BAL-GF-EE-EEEE_01
  • BAL-GF-EE-EEEE_02
  • BAL-GF-EE-EEEE_03
  • BAL-GF-EE-EEEE_05
  • BAL-GF-EE-EEEE_06
  • BAL-GR-EE-EEEE_07
  • BAL-GR-EE-EEEE_08
  • BAL-GR-EE-EEEE_09
  • BAL-GR-EE-EEEE_13
  • BAL-GR-EE-EEEE_14
  • BAL-GR-EE-EEEE_16
  • BAL-GR-EE-EEEE_17
  • BAL-GR-EE-EEEE_18
  • BAL-GR-EE-EEEE_19
  • BAL-NBP-EE-EEEE_10
  • BAL-EE-AA
  • BAL-EE-EGB-OFFSHORE
  • BAL-EE-GF-OFFSHORE
  • BAL-EE-GR-OFFSHORE
  • BAL-EE-NBP-OFFSHORE
  • BAL-EGB-EE-EEEE_11
  • BAL-GF-EE-EEEE_01
  • BAL-GF-EE-EEEE_02
  • BAL-GF-EE-EEEE_03
  • BAL-GF-EE-EEEE_05
  • BAL-GF-EE-EEEE_06
  • BAL-GR-EE-EEEE_07
  • BAL-GR-EE-EEEE_08
  • BAL-GR-EE-EEEE_09
  • BAL-GR-EE-EEEE_13
  • BAL-GR-EE-EEEE_14
  • BAL-GR-EE-EEEE_16
  • BAL-GR-EE-EEEE_17
  • BAL-GR-EE-EEEE_18
  • BAL-GR-EE-EEEE_19
  • BAL-NBP-EE-EEEE_10
  • BAL-EE-AA
  • BAL-EE-EGB-OFFSHORE
  • BAL-EE-GF-OFFSHORE
  • BAL-EE-GR-OFFSHORE
  • BAL-EE-NBP-OFFSHORE
  • BAL-EGB-EE-EEEE_11
  • BAL-GF-EE-EEEE_01
  • BAL-GF-EE-EEEE_02
  • BAL-GF-EE-EEEE_03
  • BAL-GF-EE-EEEE_05
  • BAL-GF-EE-EEEE_06
  • BAL-GR-EE-EEEE_07
  • BAL-GR-EE-EEEE_08
  • BAL-GR-EE-EEEE_09
  • BAL-GR-EE-EEEE_13
  • BAL-GR-EE-EEEE_14
  • BAL-GR-EE-EEEE_16
  • BAL-GR-EE-EEEE_17
  • BAL-GR-EE-EEEE_18
  • BAL-GR-EE-EEEE_19
  • BAL-NBP-EE-EEEE_10
  • BAL-FI-AS
  • BAL-FI-BB
  • BAL-FI-BS
  • BAL-FI-GF
  • BAL-FI-NB
  • BAL-FI-QK
  • BAL-FI-AS
  • BAL-FI-BB
  • BAL-FI-BS
  • BAL-FI-GF
  • BAL-FI-NB
  • BAL-FI-QK
  • BAL-FI
  • BAL-FI-AS
  • BAL-FI-BB
  • BAL-FI-BS
  • BAL-FI-GF
  • BAL-FI-NB
  • BAL-FI-QK
  • BAL-FI
  • BAL-FI-AS
  • BAL-FI-BB
  • BAL-FI-BS
  • BAL-FI-GF
  • BAL-FI-NB
  • BAL-FI-QK
  • BAL-FI-AS
  • BAL-FI-BB
  • BAL-FI-BS
  • BAL-FI-GF
  • BAL-FI-NB
  • BAL-FI-QK
  • BAL-LT-AA-01
  • BAL-LT-AA-02
  • BAL-LT-AA-03
  • BAL-LT-AA-01
  • BAL-LT-AA-02
  • BAL-LT-AA-03
  • BAL-LT-AA-01
  • BAL-LT-AA-02
  • BAL-LT-AA-03
  • BAL-LT-AA-01
  • BAL-LT-AA-02
  • BAL-LT-AA-03
  • BAL-LT-AA-01
  • BAL-LT-AA-02
  • BAL-LT-AA-03
  • BAL-LT-AA-01
  • BAL-LT-AA-02
  • BAL-LT-AA-03
  • BAL-LT-AA-01
  • BAL-LT-AA-02
  • BAL-LT-AA-03
  • BAL-LT-AA-01
  • BAL-LT-AA-02
  • BAL-LT-AA-03
  • BAL-LV-AAA-007
  • BAL-LV-AAA-009
  • L2-SEA-007-POL
  • L2-SEA-008-POL
  • L2-SEA-009-POL
  • L4-POL-001
  • L4-POL-002
  • L4-POL-003
  • L4-POL-004
  • L4-POL-005
  • L4-POL-006
  • L4-POL-007
  • L4-POL-008
  • L4-POL-009
  • L4-POL-010
  • L4-POL-011
  • L4-POL-012
  • L4-POL-013
  • L4-POL-014
  • L4-POL-015
  • L4-POL-016
  • L4-POL-017
  • L4-POL-018
  • L4-POL-019
  • L2-SEA-007-POL
  • L2-SEA-008-POL_1
  • L2-SEA-009-POL
  • L4-POL-020
  • L4-POL-021
  • L4-POL-022
  • L4-POL-023
  • L4-POL-024
  • L4-POL-025
  • L4-POL-026
  • L4-POL-027
  • L4-POL-028
  • L4-POL-029
  • L4-POL-030
  • L2-SEA-007-POL
  • L2-SEA-008-POL
  • L2-SEA-009-POL
  • L4-POL-001
  • L4-POL-002
  • L4-POL-003
  • L4-POL-004
  • L4-POL-005
  • L4-POL-006
  • L4-POL-007
  • L4-POL-008
  • L4-POL-009
  • L4-POL-010
  • L4-POL-011
  • L4-POL-012
  • L4-POL-013
  • L4-POL-014
  • L4-POL-015
  • L4-POL-016
  • L4-POL-017
  • L4-POL-018
  • L4-POL-019
  • L2-SEA-007-POL
  • L2-SEA-008-POL_1
  • L2-SEA-009-POL
  • L4-POL-020
  • L4-POL-021
  • L4-POL-022
  • L4-POL-023
  • L4-POL-024
  • L4-POL-025
  • L4-POL-026
  • L4-POL-027
  • L4-POL-028
  • L4-POL-029
  • L4-POL-030
  • ANS-SE-AA-B_Kattegatt
  • ANS-SE-AA-B_Skagerrak
  • BAL-SE-AA-B_Arkonahavet_och_S_Oresund
  • BAL-SE-AA-B_Bottenhavet
  • BAL-SE-AA-B_Bottenviken
  • BAL-SE-AA-B_N_Kvarken
  • BAL-SE-AA-B_O_Gotlandshavet
  • BAL-SE-AA-B_V_Gotlandshavet
  • ANS-SE-AA-B_Kattegatt
  • ANS-SE-AA-B_Oresund
  • ANS-SE-AA-B_Skagerrak
  • BAL-SE-AA-B_Alands_hav
  • BAL-SE-AA-B_Arkonahavet_och_S_Oresund
  • BAL-SE-AA-B_Bornholmshavet_och_Hanobukten
  • BAL-SE-AA-B_Bottenhavet
  • BAL-SE-AA-B_Bottenviken
  • BAL-SE-AA-B_N_Gotlandshavet
  • BAL-SE-AA-B_N_Kvarken
  • BAL-SE-AA-B_O_Gotlandshavet
  • BAL-SE-AA-B_V_Gotlandshavet
  • ANS-SE-AA-B_Kattegatt
  • ANS-SE-AA-B_Oresund
  • ANS-SE-AA-B_Skagerrak
  • BAL-SE-AA-B_Alands_hav
  • BAL-SE-AA-B_Arkonahavet_och_S_Oresund
  • BAL-SE-AA-B_Bornholmshavet_och_Hanobukten
  • BAL-SE-AA-B_Bottenhavet
  • BAL-SE-AA-B_Bottenviken
  • BAL-SE-AA-B_N_Gotlandshavet
  • BAL-SE-AA-B_N_Kvarken
  • BAL-SE-AA-B_O_Gotlandshavet
  • BAL-SE-AA-B_V_Gotlandshavet
  • ANS-SE-AA-B_Kattegatt
  • ANS-SE-AA-B_Oresund
  • ANS-SE-AA-B_Skagerrak
  • BAL-SE-AA-B_Alands_hav
  • BAL-SE-AA-B_Arkonahavet_och_S_Oresund
  • BAL-SE-AA-B_Bornholmshavet_och_Hanobukten
  • BAL-SE-AA-B_Bottenhavet
  • BAL-SE-AA-B_Bottenviken
  • BAL-SE-AA-B_N_Gotlandshavet
  • BAL-SE-AA-B_N_Kvarken
  • BAL-SE-AA-B_O_Gotlandshavet
  • BAL-SE-AA-B_V_Gotlandshavet
  • ANS-SE-AA-B_Kattegatt
  • ANS-SE-AA-B_Oresund
  • ANS-SE-AA-B_Skagerrak
  • BAL-SE-AA-B_Alands_hav
  • BAL-SE-AA-B_Arkonahavet_och_S_Oresund
  • BAL-SE-AA-B_Bornholmshavet_och_Hanobukten
  • BAL-SE-AA-B_Bottenhavet
  • BAL-SE-AA-B_Bottenviken
  • BAL-SE-AA-B_N_Gotlandshavet
  • BAL-SE-AA-B_N_Kvarken
  • BAL-SE-AA-B_O_Gotlandshavet
  • BAL-SE-AA-B_V_Gotlandshavet
  • ANS-SE-AA-BG_Vasterhavet
  • BAL-SE-AA-BG_Bottniska_Viken
  • BAL-SE-AA-BG_Egentliga_Ostersjon
  • ANS-SE-AA-B_Kattegatt
  • ANS-SE-AA-B_Oresund
  • ANS-SE-AA-B_Skagerrak
  • BAL-SE-AA-B_Alands_hav
  • BAL-SE-AA-B_Arkonahavet_och_S_Oresund
  • BAL-SE-AA-B_Bornholmshavet_och_Hanobukten
  • BAL-SE-AA-B_Bottenhavet
  • BAL-SE-AA-B_Bottenviken
  • BAL-SE-AA-B_N_Gotlandshavet
  • BAL-SE-AA-B_N_Kvarken
  • BAL-SE-AA-B_O_Gotlandshavet
  • BAL-SE-AA-B_V_Gotlandshavet
Temporal scope (start date - end date)
1983-9999
1979-9999
1997-9999
2015-9999
1993-9999
1993-9999
2010-9999
2010-9999
2006-9999
1993-9999
1993-9999
1993-9999
1993-9999
2007-9999
1979-9999
1979-9999
2009-9999
1899-9999
1973-9999
1965-9999
1970-9999
1990-9999
1980-9999
1981-9999
1980-9999
1972-9999
1972-9999
1981-9999
1981-9999
2021-2026
1999-9999
1999-9999
1999-9999
1999-9999
1994-9999
1979-9999
1967-9999
1893-9999
2022-9999
1893-9999
1774-9999
Monitoring frequency
Other
Other
Other
Other
Yearly
Yearly
Yearly
Yearly
Other
Yearly
Yearly
Yearly
Continually
Continually
Yearly
Yearly
Yearly
Continually
Continually
Yearly
Monthly
Other
3-monthly
3-monthly
3-monthly
3-monthly
3-monthly
3-monthly
3-monthly
Other
Yearly
Yearly
Yearly
Yearly
2-weekly
Other
Other
Other
Daily
Other
Hourly
Monitoring type
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Remote satellite imagery
  • Administrative data collection
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling coastal
  • Numerical modelling
  • Remote satellite imagery
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Remote satellite imagery
  • Remote surveillance
  • In-situ sampling coastal
  • Numerical modelling
  • Remote satellite imagery
  • Remote surveillance
  • Numerical modelling
  • Remote satellite imagery
  • Visual observation
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Numerical modelling
  • Remote satellite imagery
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Remote surveillance
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Administrative data collection
  • In-situ sampling coastal
  • Numerical modelling
  • Remote surveillance
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Visual observation
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Other
  • Visual observation
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Visual observation
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Remote satellite imagery
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Remote satellite imagery
  • In-situ sampling coastal
  • In-situ sampling offshore
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Remote satellite imagery
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Remote satellite imagery
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Remote satellite imagery
  • In-situ sampling coastal
  • In-situ sampling offshore
  • Numerical modelling
  • Remote satellite imagery
  • Remote surveillance
  • Remote surveillance
Monitoring method
  • HELCOM Guidelines for monitoring of mesozooplankton
  • HELCOM Guidelines for measuring chlorophyll a
  • HELCOM Guidelines for monitoring continuous noise
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • Other monitoring method
  • HELCOM Guidelines for measuring chlorophyll a
  • HELCOM Guidelines for monitoring continuous noise
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • Other monitoring method
  • OSPAR CEMP Guidelines for Monitoring and Assessment of loud, low and mid-frequency impulsive sound sources in the OSPAR Maritime Region
  • Other monitoring method
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • HELCOM Guidelines for monitoring of mesozooplankton
  • HELCOM Guidelines for monitoring of mesozooplankton
  • HELCOM Guidelines for monitoring of non-indigenous species by eRAS
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • OSPAR JAMP Eutrophication Monitoring Guidelines: Benthos (Agreement 2012-12) (Replaces Agreement 1997-06)
  • Other monitoring method
  • Other monitoring method
  • Other monitoring method
  • HELCOM Guidelines for sampling and determination of ammonium
  • HELCOM Guidelines for sampling and determination of nitrate
  • HELCOM Guidelines for sampling and determination of nitrite
  • HELCOM Guidelines for sampling and determination of phosphate
  • HELCOM Guidelines for sampling and determination of silicate
  • HELCOM Guidelines for sampling and determination of total nitrogen
  • HELCOM Guidelines for sampling and determination of total phosphorus
  • HELCOM Guidelines for sampling and determination of dissolved oxygen
  • HELCOM Guidelines for sampling and determination of hydrogen sulphide
  • HELCOM Guidelines for sampling and determination of pH
  • HELCOM Guidelines for determination of salinity and temperature using CTD
  • HELCOM Guidelines for measuring Secchi depth
  • Other monitoring method
  • Other monitoring method
  • HELCOM Manual for monitoring in COMBINE programme
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • HELCOM Manual for monitoring in COMBINE programme
  • Bathing Water Profiles: Best Practice and Guidance (2009)
  • HELCOM Manual for monitoring in COMBINE programme
  • Other monitoring method
  • HELCOM Manual for monitoring in COMBINE programme
  • HELCOM Guidelines for the annual and periodical compilation and reporting of waterborne pollution inputs to the Baltic Sea (PLC-Water)
  • HELCOM Guidelines for monitoring of mesozooplankton
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • HELCOM Manual for monitoring in COMBINE programme
  • HELCOM Guidelines for measuring chlorophyll a
  • HELCOM Manual for monitoring in COMBINE programme
  • HELCOM Manual for monitoring in COMBINE programme
  • HELCOM Manual for monitoring in COMBINE programme
  • HELCOM Manual for monitoring in COMBINE programme
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • HELCOM Guidelines for monitoring of mesozooplankton
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • HELCOM Guidelines for monitoring of mesozooplankton
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • HELCOM Guidelines for measuring chlorophyll a
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • HELCOM Guidelines for measuring chlorophyll a
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • HELCOM Guidelines for monitoring of mesozooplankton
  • OSPAR CEMP Guideline: Common Indicator: PH1/FW5 Plankton lifeforms (Agreement 2018-07)
  • Other monitoring method
  • HELCOM Guidelines for measuring chlorophyll a
  • HELCOM Guidelines for monitoring phytoplankton species composition, abundance and biomass
  • OSPAR CEMP Eutrophication Monitoring Guidelines: Phytoplankton Species Composition (Agreement 2016-06)
  • OSPAR CEMP Guideline: Common Indicator: PH1/FW5 Plankton lifeforms (Agreement 2018-07)
  • OSPAR JAMP Eutrophication Monitoring Guidelines: Chlorophyll a in Water (Agreement 2012-11) (Replaces Agreement 1997-04)
  • Other monitoring method
  • HELCOM Guidelines for measuring Secchi depth
  • HELCOM Guidelines for measuring turbidity
  • Other monitoring method
  • HELCOM Guidelines for sampling and determination of dissolved oxygen
  • HELCOM Guidelines for sampling and determination of hydrogen sulphide
  • HELCOM Guidelines for sampling and determination of pH
  • HELCOM Guidelines for sampling and determination of total alkalinity
  • OSPAR Revised JAMP Eutrophication Monitoring Guideline: Oxygen (Agreement 2013-05) (Replaces Agreement 1997-03)
  • Other monitoring method
  • Other monitoring method
  • HELCOM Guidelines for determination of salinity and temperature using CTD
  • Other monitoring method
  • HELCOM Manual for monitoring in COMBINE programme
  • Other monitoring method
Monitoring method other
|| MP_037 ||
|| MP_041 || HELCOM COMBINE Manual Annex C-3 sediment traps
|| MP_039 || HELCOM COMBINE Manual Annex C-3 sediment traps
There is no separate monitoring for the programme, the administrative data collection is performed and based on information from databases, maps, plans, environmental permits and their reporting and controls, etc. Estonian maritime spatial plan. The frequency of monitoring depends on activity: from annually to once per the 6-year period.
Joint HELCOM/OSPAR Guidelines on the granting of exemptions under the International Convention for the Control and Management of Ships’ Ballast Water and Sediments, Regulation A (https://www.helcom.fi/wp-content/uploads/2019/08/Joint-HELCOM_OSPAR-Guidelines.pdf);
The numerical data used are calculated on the basis of data collected under other programmes. The level of biopollution is assessed on the basis of a scientifically validated methodology (Olenin et al. 2007) for an average of three sub-basins (the Gulf of Riga, the Gulf of Finland and the Baltic Proper).
National, under development
Automatic measurements and mathematical modelling - Copernicus marine service (http://marine.copernicus.eu/) and BOOS (http://www.boos.org/).
The main characteristics of ice cover are measured using satellite observations or/and in combination - satellite images and visual observations.
Automated wave buoys, automated mareografs and satellite imagery.
Monitoring is carried out according to the HELCOM guidelines
Monitoring is carried out according to the HELCOM guidelines (see HELCOM Monitoring Manual: http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-manual)
Monitoring is carried out according to the HELCOM guidelines (see HELCOM Monitoring Manual: http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-manual) Near real time data are collected as well
Monitoring is carried out according to the HELCOM guidelines (see HELCOM Monitoring Manual: http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-manual)
Monitoring is carried out according to the HELCOM guidelines (see HELCOM Monitoring Manual: http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-manual)
Monitoring is carried out according to the HELCOM guidelines (see HELCOM Monitoring Manual: http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-manual)
Monitoring is carried out according to the HELCOM guidelines (see HELCOM Monitoring Manual: http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-manual) Near real time data are collected as well
Monitoring is carried out according to the HELCOM guidelines (see HELCOM Monitoring Manual: http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-manual) Near real time data are collected as well
"https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/djurplankton-trend--och-omradesovervakning.html https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/geleplankton.html"
"https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/vaxtplankton.html https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/bakteriell-syrekonsumtion.html https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/hydrografi-och-narsalter-trendovervakning.html https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/primarproduktion.html https://www.smhi.se/data/oceanografi/algsituationen"
"https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/primarproduktion.html https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/siktdjup.html"
"https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/syrehalt-i-bottenvatten-kartering.html https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/primarproduktion.html https://www.ospar.org/work-areas/hasec/eutrophication/common-procedure"
Sweden are monitoring coastal and marine waters using Copernicus Sentinel-2 and Sentinel-3 data with the general aim to better assess dynamics and state through integrated use of Earth Observation, models and in-situ data.
https://www.havochvatten.se/vagledning-foreskrifter-och-lagar/vagledningar/ovriga-vagledningar/undersokningstyper-for-miljoovervakning/undersokningstyper/hydrografi-och-narsalter-trendovervakning.html
Currents are often measured with ADCP, acoustic doppler current profiles, which are placed on the bottom and measure in the water column. Waves are usually measured with a wave buoy that is equipped with an accelerometer. Data is transmitted via GSM or iridium (satellite link to the internet). Sea levels are measured in mareographs using the stilling well technique; radar and/or pressure sensors with automatic data transfer to a data centre.
Quality control
|| MP_037 || Nationale SOP
|| MP_041 || national: Qualitätssicherungsprogramm des Bund-Länder-Messprogramms (BLMP); anderer: DIN EN ISO/IEC 17025
|| MP_039 || Nationaler Standard: Qualitätssicherungsprogramm (Ringversuche) des Bund-Länder-Messprogramms Anderer Standard: EN ISO/IEC 17025
Data quality control systems of relevant data sources.
The quality is ensured by following the standard methods and HELCOM guidance as well as accreditation of experts and persons by whom the monitoring is performed.
The quality is ensured by following the HELCOM guidance as well as accreditation of experts and persons by whom the monitoring is performed.
The quality is ensured by the accreditation of experts and persons by whom the monitoring is performed and following guidance recommendations.
The monitoring and assessment quality is assured by regional coordination via HELCOM, following the HELCOM, HELCOM/OSPAR and national monitoring guidelines, and accreditation of experts and persons by whom the monitoring is performed.
The quality is assured by using regionally developed algorithms and by international collaboration.
The quality is assured by following the standard methods and HELCOM guidelines, by an accreditation of experts and persons by whom the monitoring is performed and filling of general requirements for the competence of testing and calibration laboratories according to ISO/IEC 17025.
The quality is assured by following the standards (ISO 5814, EVS-EN ISO 10523) and HELCOM guidelines and CMEMS protocols, by an accreditation of experts and persons by whom the monitoring is performed.
The quality is assured by following international standards, including CMEMS protocols and HELCOM guidelines, and by an accreditation of experts and persons by whom the monitoring is performed.
The quality is assured by following WMO guidelines (weather service); operational measurements and mathematical modelling are in compliance with Copernicus maritime service quality system.
WMO and CMEMS quality assurance system (Cal/Val).
Offshore sampling follows HELCOM COMBINE program and coastal sampling instructions from Finnish Environment Institute (SYKE). Ring tests for zooplankton identifiers (HELCOM ZEN), Inter-and intra-laboratory calibrations.
Monitoring follows instructions from Finnish Environment Institute (SYKE), which are based on HELCOM COMBINE program. Certificate of phytoplankton identification is required from person identifying phytoplankton from the sample
Laboratories has to fill requirements made by National Supervisory Authority for Welfare and Health
The quality system is formalized in the HELCOM COMBINE manual: http://www.helcom.fi/action-areas/monitoring-and-assessment/monitoring-manual/hydrography/temperature-salinity-transparency-turbidity
Automated and manual quality checks on wave buoys and mareografs. Ice service operates as part of Weather and Safety Centre which follows ISO 9001:2008. Ice data is automatically and manually checked.
The offshore monitoring parameters (research vessels and Alg@line), with the exception of pCO2, comply with the standard for testing laboratories (SFS-EN ISO/IEC 17025) and are determined by the FINAS-accredited Environment Testing Laboratory (FIN-T003).
Both sampling and laboratory analyses are quality assurance activities carried out by staff trained according to the standards and guidelines in force (Kuunen et al. 2008). The air deposition model is produced by EMEP and the annual report reflects the model’s validation and uncertainty.
Aplinkos apsaugos agentūros laboratorijų darbe atliekamų tyrimų kokybė užtikrinama laikantis standarto LST EN ISO/IEC 17025 reikalavimų. Duomenų kokybei užtikrinti daromi palyginamieji tyrimai, duomenys lyginami su daugiametėmis tendencijomis, ieškomos išskirtys. Ekspertai dalyvauja HELCOM ZEN projektuose.
Aplinkos apsaugos agentūros laboratorijų darbe atliekamų tyrimų kokybė užtikrinama laikantis standarto LST EN ISO/IEC 17025 reikalavimų. Duomenų kokybei užtikrinti daromi palyginamieji tyrimai, duomenys lyginami su daugiametėmis tendencijomis, ieškomos išskirtys. Tyrėjas dalyvauja HELCOM PEG (Phytoplankton Expert Group) darbo grupėje.
Aplinkos apsaugos agentūros laboratorijų darbe atliekamų tyrimų kokybė užtikrinama laikantis standarto LST EN ISO/IEC 17025 reikalavimų. Be CTD matavimų, tyrimai dar atliekami ir rankiniais instrumentais (konduktometru), siekiant palyginti duomenis ir užtikrinti jų kokybę. Į duomenų bazę suvestus duomenis dar kartą patikrina kitas tyrėjas, ir tik tuomet duomenys tampa prieinami kitiems vartotojams, teikiami į ICES, WISE duomenų bazes.
Aplinkos apsaugos agentūros laboratorijų darbe atliekamų tyrimų kokybė užtikrinama laikantis standarto LST EN ISO/IEC 17025 reikalavimų. Duomenų kokybei užtikrinti daromi palyginamieji tyrimai, kontrolinės diagramos, duomenys lyginami su daugiametėmis tendencijomis, ieškomos išskirtys.
Aplinkos apsaugos agentūros laboratorijų darbe atliekamų tyrimų kokybė užtikrinama laikantis standarto LST EN ISO/IEC 17025 reikalavimų. Duomenų kokybei užtikrinti daromi palyginamieji tyrimai, kontrolinės diagramos, duomenys lyginami su daugiametėmis tendencijomis, ieškomos išskirtys.
Aplinkos apsaugos agentūros laboratorijų darbe atliekamų tyrimų kokybė užtikrinama laikantis standarto LST EN ISO/IEC 17025 reikalavimų. Be automatinių matavimų davikliais, tyrimai dar atliekami ir rankiniais instrumentais (oksimetru), siekiant palyginti duomenis ir užtikrinti jų kokybę. Į duomenų bazę suvestus duomenis dar kartą patikrina kitas tyrėjas, ir tik tuomet duomenys tampa prieinami kitiems vartotojams, teikiami į ICES, WISE duomenų bazes.
Aplinkos apsaugos agentūros laboratorijų darbe atliekamų tyrimų kokybė užtikrinama laikantis standarto LST EN ISO/IEC 17025 reikalavimų. Matavimus ir vertinimus paraleliai atlieka skirtingi tyrėjai, duomenys palyginami. Į duomenų bazę suvestus duomenis dar kartą patikrina kitas tyrėjas, ir tik tuomet duomenys tampa prieinami kitiems vartotojams.
Aplinkos apsaugos agentūros laboratorijų darbe atliekamų tyrimų kokybė užtikrinama laikantis standarto LST EN ISO/IEC 17025 reikalavimų. Matavimus paraleliai atlieka skirtingi tyrėjai, duomenys palyginami. Į duomenų bazę suvestus duomenis dar kartą patikrina kitas tyrėjas, ir tik tuomet duomenys tampa prieinami kitiems vartotojams.
QA procedures according to Manual for Marine Monitoring in the COMBINE Programme of HELCOM. Part B. General Guidelines on Quality Assurance for Monitoring in the Baltic Sea" and in Guidelines relating to the specific parameter - "Guidelines for monitoring phytoplankton species composition, abundance and biomas).". QC procedures: R - control charts based on agreed quality criterion, participation in ring-testing activities in line with HELCOM recommendations.
according HELCOM recommendations
according HELCOM recommendations
according HELCOM recommendations
according HELCOM recommendations
https://www.havochvatten.se/download/18.55c45bd31543fcf8536bb64f/1463040882078/bilaga-till-djurplankton.pdf
All analyzes of the national samples are analyzed by Swedac-accredited laboratories. Sampling is also performed using quality-assured and accredited methodology. The results are intercalibrated by the laboratories participating in various test comparisons, as well as by self-arranged comparisons between the national monitoring contractors. There are also regular intercalibrations for phytoplankton and chlorophyll between the Baltic Sea countries, as well as annual knowledge transfer between experts from these laboratories.
Routines for quality control will be specified in the method standard that is under development.
The laboratories are Swedac-accredited according to ISO 17025. Oxygen profile data are reviewed according to ICES's advice and reported according to international standards such as IPTS-68, ITS-90 and PSS-78. Quality review takes place at national and international level (through ICES) and data is used within assimilation and research, which take into account differences in measurement uncertainty.
Data from the satellites' sensors undergoes a regular recalibration, (called re-processing) where data is flagged as suspicious due to various factors such as clouds, solar reflections, impact from land pixels and more. For products such as chlorophyll, an automated quality control takes place depending on where they are sourced from. Usually there are one or more scientific publications that describe the methods (equations) and how well these correspond to reality (assessment of model quality, validation).
The laboratories are Swedac-accredited according to ISO 17025. Profile data are reviewed according to ICES's advice and reported according to international standards such as IPTS-68, ITS-90 and PSS-78. Quality review takes place at national and international level (through ICES) and data is used in assimilation and research, which takes into account differences in measurement uncertainty.
Data undergoes rigorous automated quality control. Extreme values are filtered out or flagged. Some manual review occurs.
Data management
Die Bund/Länder-Arbeitsgemeinschaft Nord- und Ostsee (BLANO) erarbeitet gerade ein nationales Konzept zum Datenmanagement, um insbesondere die Berichterstattung und Umsetzung der MSRL zu unterstützen. Dabei werden bestehende Zielsysteme, wie die Datenabgabe an den ICES (für OSPAR und HELCOM), weitere EU-Richtlinien und die Bereitstellung von Diensten für INSPIRE berücksichtigt. Hierzu werden verschiedene Instrumente des Datenmanagements, wie ein Nationaler mariner Datenkatalog (NMDK) oder die Koordinierung der Datenhaltung von Geo-, Meta-, sowie Zeitreihendaten vorgesehen. Die Daten werden durch die verschiedenen föderalen Strukturen in den Küstenländern, Bundes- und Forschungseinrichtungen dezentral oder zentral durch die Meeresumweltdatenbank (MUDAB) bereitgestellt. Trotzdem sind einzelne Datenbestände noch nicht frei verfügbar. Die Daten werden von den Datenoriginatoren an die nationale Meeresumweltdatenbank MUDAB geliefert. Von dort werden sie an den ICES weitergegeben.
Die Bund/Länder-Arbeitsgemeinschaft Nord- und Ostsee (BLANO) erarbeitet gerade ein nationales Konzept zum Datenmanagement, um insbesondere die Berichterstattung und Umsetzung der MSRL zu unterstützen. Dabei werden bestehende Zielsysteme, wie die Datenabgabe an den ICES (für OSPAR und HELCOM), weitere EU-Richtlinien und die Bereitstellung von Diensten für INSPIRE berücksichtigt. Hierzu werden verschiedene Instrumente des Datenmanagements, wie ein Nationaler mariner Datenkatalog (NMDK) oder die Koordinierung der Datenhaltung von Geo-, Meta-, sowie Zeitreihendaten vorgesehen. Die Daten werden durch die verschiedenen föderalen Strukturen in den Küstenländern, Bundes- und Forschungseinrichtungen dezentral oder zentral durch die Meeresumweltdatenbank (MUDAB) bereitgestellt. Trotzdem sind einzelne Datenbestände noch nicht frei verfügbar. Die Daten werden von den Datenoriginatoren an die nationale Meeresumweltdatenbank MUDAB geliefert. Von dort werden sie an den ICES weitergegeben.
Die Bund/Länder-Arbeitsgemeinschaft Nord- und Ostsee (BLANO) erarbeitet gerade ein nationales Konzept zum Datenmanagement, um insbesondere die Berichterstattung und Umsetzung der MSRL zu unterstützen. Dabei werden bestehende Zielsysteme, wie die Datenabgabe an den ICES (für OSPAR und HELCOM), weitere EU-Richtlinien und die Bereitstellung von Diensten für INSPIRE berücksichtigt. Hierzu werden verschiedene Instrumente des Datenmanagements, wie ein Nationaler mariner Datenkatalog (NMDK) oder die Koordinierung der Datenhaltung von Geo-, Meta-, sowie Zeitreihendaten vorgesehen. Die Daten werden durch die verschiedenen föderalen Strukturen in den Küstenländern, Bundes- und Forschungseinrichtungen dezentral oder zentral durch die Meeresumweltdatenbank (MUDAB) bereitgestellt. Trotzdem sind einzelne Datenbestände noch nicht frei verfügbar. Die Daten werden von den Datenoriginatoren an die nationale Meeresumweltdatenbank MUDAB geliefert. Von dort werden sie an den ICES weitergegeben.
The data are compiled from different databases of different institutions. The compilation and collection of data are coordinated by the Marine Environment Department of the Ministry of the Environment.
Data are yearly reported to the national environmental monitoring database KESE (by 1 March) and ICES (HELCOM Combine).
Data are yearly reported to the national environmental monitoring database KESE (by 1 March) and ICES (HELCOM Combine).
Data are yearly reported to the national environmental monitoring database KESE (by 1 March).
The data are yearly reported to the national environmental monitoring database KESE (by 1 March).
Raw data (excl satellite images) are stored at the national environmental monitoring database KESE.
The data are yearly reported to the national environmental monitoring database KESE (by 1 March) and ICES (HELCOM Combine).
The data are yearly reported to the national environmental monitoring database KESE (by 1 March) and ICES (HELCOM Combine).
The data are yearly reported to the national environmental monitoring database KESE (by 1 March). The data on autonomous buoys measurements are stored at CMEMS/EMODnet Physics.
The data are stored at Estonian Environment Agency (Weather Service) in WISKI database, TalTech Marine Systems Institute (BOOS) and CMEMS in situ data. Automatic measurements and modelled data are available through Copernicus Marine Service and/or EMODnet Physics.
The data are stored at Estonian Environment Agency, TalTech Marine Systems Institute (http://sahm.ttu.ee/balticseapic/index.php?do=ice) and Baltic Sea Ice Services (http://www.bsis-ice.de/).
Data saved to SYKE data center, National Oceanographic and Atmospheric Administrations (NOAA) plankton database and International Council for the Exploration of the Sea (ICES) data portal. Results can be found from HELCOM indicators
Data is saved into Finland's environmental administrations Hertta- data system and submitted to ICES.
National Supervisory Authority for Welfare and Health reports bathing water quality to European Commission.
SYKE’s public database and submitted to ICES.
Data is saved to Finnish Meteorological Institutes database
SYKE database , submitted to ICES and summarized by HELCOM.
HELCOM PLC database
Duomenys kaupiami Aplinkos apsaugos agentūros duomenų bazėje. Naudojami vertinant jūros aplinkos būklę pagal Jūrų strategijos pagrindų direktyvą, stebint daugiametes tendencijas. Kasmet teikiami ICES. Pagal prašymus teikiami visuomenei, juridiniams asmenims (prašymai siunčiami Aplinkos apsaugos agentūrai (www.gamta.lt) elektroniniu paštu aaa@aaa.am.lt).
Duomenys kaupiami Aplinkos apsaugos agentūros duomenų bazėje. Naudojami vertinant jūros aplinkos būklę pagal Bendrąją vandens politikos direktyvą, Jūrų strategijos pagrindų direktyvą, stebint daugiametes tendencijas. Kasmet teikiami ICES. Pagal prašymus teikiami visuomenei, juridiniams asmenims (prašymai siunčiami Aplinkos apsaugos agentūrai (www.gamta.lt) elektroniniu paštu aaa@aaa.am.lt).
Duomenys kaupiami Aplinkos apsaugos agentūros duomenų bazėje. Naudojami vertinant jūros aplinkos būklę pagal Bendrąją vandens politikos direktyvą, Jūrų strategijos pagrindų direktyvą, stebint daugiametes tendencijas. Kasmet teikiami ICES, WISE. Pagal prašymus teikiami visuomenei, juridiniams asmenims (prašymai siunčiami elektroniniu paštu aaa@aaa.am.lt).
Duomenys kaupiami Aplinkos apsaugos agentūros duomenų bazėje. Naudojami vertinant jūros aplinkos būklę pagal Bendrąją vandens politikos direktyvą, Jūrų strategijos pagrindų direktyvą, Nitratų direktyvą, stebint daugiametes tendencijas. Kasmet teikiami ICES, WISE. Pagal prašymus teikiami visuomenei, juridiniams asmenims (prašymai siunčiami Aplinkos apsaugos agentūrai (www.gamta.lt) elektroniniu paštu aaa@aaa.am.lt).
Duomenys kaupiami Aplinkos apsaugos agentūros duomenų bazėje. Naudojami vertinant jūros aplinkos būklę pagal Bendrąją vandens politikos direktyvą, Jūrų strategijos pagrindų direktyvą, Nitratų direktyvą, stebint daugiametes tendencijas. Pagal prašymus teikiami visuomenei, juridiniams asmenims (prašymai siunčiami Aplinkos apsaugos agentūrai (www.gamta.lt) elektroniniu paštu aaa@aaa.am.lt). Teikiami į ICES, WISE duomenų bazes.
Duomenys kaupiami Aplinkos apsaugos agentūros duomenų bazėje. Naudojami vertinant jūros aplinkos būklę, stebint daugiametes tendencijas. Pagal prašymus teikiami visuomenei, juridiniams asmenims (prašymai siunčiami Aplinkos apsaugos agentūrai (www.gamta.lt) elektroniniu paštu aaa@aaa.am.lt). Teikiami į ICES, WISE duomenų bazes.
Duomenys kaupiami Aplinkos apsaugos agentūros duomenų bazėje. Naudojami vertinant jūros aplinkos būklę, stebint daugiametes tendencijas. Pagal prašymus teikiami visuomenei, juridiniams asmenims (prašymai siunčiami Aplinkos apsaugos agentūrai (www.gamta.lt) elektroniniu paštu aaa@aaa.am.lt).
Duomenys kaupiami Aplinkos apsaugos agentūros duomenų bazėje. Naudojami vertinant jūros aplinkos būklę, stebint daugiametes tendencijas. Pagal prašymus teikiami visuomenei, juridiniams asmenims (prašymai siunčiami Aplinkos apsaugos agentūrai (www.gamta.lt) elektroniniu paštu aaa@aaa.am.lt).
Data holder is Latvian Institute of Aquatic Ecology (LIAE). QC on data according to the Manual for Marine Monitoring in the COMBINE Programme of HELCOM. Part B. General Guidelines on Quality Assurance for Monitoring in the Baltic Sea" and in Guidelines relating to the specific parameter. Data are available in LIAE, ICES, EMODNET.
Data are available for download at the national data host SMHI. Data are also reported to ICES, Helcom, Ospar and EEA. SMHI also shares data through SeaDataNet, which has defined Inspire standards for marine data, as well as through EMODnet. Data are freely available through these sources. Computer products, such as SMHI's annual estimate of the total area of anoxic bottoms in the Baltic Sea, can also be collected from SMHI.
Reprocessed ocean color data is available with daily average images from 2016 to today, at the Copernicus Marine Environment Monitoring Service. Eventually, data will also be available from SMHI, who are developing a publically available infrastructure for the production of aquatic products adapted to cover all of Sweden's land and water surfaces.
Observation data from the monitoring is made available at the national data host SMHI through several services including Sharkweb, Sharkdata and SeaDataNet. Modeled data are available via SMHI and Copernicus marine services. Daily Ice Maps during November to May are available at SMHI's ice service
Data is stored at SMHI and shared in the networks BOOS, NOOS, Seadatacloud and Copernicus marine services. The Swedish Maritime Administration's measurements are available in a system called ViVa (Wind and Water Information) via the web and an app.
Data access
http://register.keskkonnainfo.ee/envreg/main#HTTPMEaW1ThSjHUyzXzMt7jr3MuRYp5PuE,https://andmed.stat.ee/et/stat,https://geoportaal.maaamet.ee/,https://kese.envir.ee,https://kotkas.envir.ee/,https://veeteedeamet.ee/et/laevandus-eesti-lipp-sadamad/eesti-laevaregistrid,https://vet.agri.ee/et/kalandus-toiduturg/puugistatistika-lossimiskohad-ja-kala-esmakokkuostukohad/puugiandmed,https://www.agri.ee/et/eesmargid-tegevused/kalamajandus-ja-kutseline-kalapuuk/puugiandmed,https://www.eas.ee/teenused/,https://www.ehr.ee/,https://www.envir.ee/et/eesmargid-tegevused/kalandus/harrastuspuuk/statistika-ja-uuringud,https://www.envir.ee/et/kalanduse-uuringud-ja-aruanded,https://www.etis.ee/,https://www.keskkonnaagentuur.ee/et/kuttimine,https://www.keskkonnaamet.ee/et/eesmargid-tegevused/jahindus/operatiivsed-kuttimisandmed,https://www.marinetraffic.com/en/ais/,https://www.sadamaregister.ee/,https://www.terviseamet.ee/et/keskkonnatervis/ettevotjale-ja-kohalikule-omavalitsusele/supluskohad-ja-ujulad/suplusvee-profiilid,https://xgis.maaamet.ee/xgis2/page/app/maainfo,https://xgis.maaamet.ee/xgis2/page/app/merekaart
Related indicator/name
  • BIOM
  • CELL-C
  • DSi, CONC-W
  • SPP-C
Contact
Geschäftsstelle Meeresschutz, geschaeftsstelle-meeresschutz@mu.niedersachsen.de
Geschäftsstelle Meeresschutz, geschaeftsstelle-meeresschutz@mu.niedersachsen.de
Geschäftsstelle Meeresschutz, geschaeftsstelle-meeresschutz@mu.niedersachsen.de
Estonian Environment Agency: Anastasiia Kovtun-Kante, anastasiia.kovtun-kante@envir.ee; Arthur Kivi, arthur.kivi@envir.ee
Estonian Environment Agency: Anastasiia Kovtun-Kante, anastasiia.kovtun-kante@envir.ee; Arthur Kivi, arthur.kivi@envir.ee
Estonian Environment Agency: Anastasiia Kovtun-Kante, anastasiia.kovtun-kante@envir.ee; Arthur Kivi, arthur.kivi@envir.ee
Estonian Environment Agency: Anastasiia Kovtun-Kante, anastasiia.kovtun-kante@envir.ee; Arthur Kivi, arthur.kivi@envir.ee
Estonian Environment Agency: Anastasiia Kovtun-Kante, anastasiia.kovtun-kante@envir.ee; Arthur Kivi, arthur.kivi@envir.ee
Estonian Environment Agency: Anastasiia Kovtun-Kante, anastasiia.kovtun-kante@envir.ee; Arthur Kivi, arthur.kivi@envir.ee
Estonian Environment Agency: Anastasiia Kovtun-Kante, anastasiia.kovtun-kante@envir.ee; Arthur Kivi, arthur.kivi@envir.ee
Estonian Environment Agency: Anastasiia Kovtun-Kante, anastasiia.kovtun-kante@envir.ee; Arthur Kivi, arthur.kivi@envir.ee
Estonian Environment Agency: Anastasiia Kovtun-Kante, anastasiia.kovtun-kante@envir.ee; Arthur Kivi, arthur.kivi@envir.ee
Estonian Environment Agency: Anastasiia Kovtun-Kante, anastasiia.kovtun-kante@envir.ee; Arthur Kivi, arthur.kivi@envir.ee
National Supervisory Authority for Welfare and Health - https://www.valvira.fi/ymparistoterveys/terveydensuojelu/uimavesi
Latvian Institute of Aquatic Ecology e-mail: juris.aigars@lhei.lv
miljoovervakning@havochvatten.se
miljoovervakning@havochvatten.se
miljoovervakning@havochvatten.se
miljoovervakning@havochvatten.se
miljoovervakning@havochvatten.se
miljoovervakning@havochvatten.se
miljoovervakning@havochvatten.se
References
|| MP_37 || --# #--
|| MP_41 || --# #--
|| MP_39 || --# #--
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
The monitoring programme is approved by the minister of the environment and available at https://www.envir.ee/et/eesmargid-tegevused/merekeskkonna-kaitse/merestrateegia (https://www.envir.ee/sites/default/files/mereala_seireprogramm_2021_2026.pdf) (in Estonian).
HELCOM Combine - https://helcom.fi/media/publications/Guidelines-for-monitoring-of-mesozooplankton.pdf
Aroviita, J., Mitikka, S., Vienonen S. (toim.) 2019: Pintavesien tilan luokittelu ja arviointiperusteet vesienhoidon kolmannella kaudella. Suomen ympäristökeskuksen raportteja 37 / 2019. HELCOM 2017: Monitoring of phytoplankton species composition, abundance and biomass.
Kettunen, I, Mäkelä, A. & Heinonen, P. 2008. Vesistötietoa näytteenottajille. Suomen ympäristökeskus ympäristöopas.